import os import re import base64 import warnings import sys # Add sys import for debugging # --- Manually add D:\Lib\site-packages to sys.path --- site_packages_path = r'D:\Lib\site-packages' if site_packages_path not in sys.path: sys.path.append(site_packages_path) # --- End of manual addition --- print(f"--- Debug --- Attempting to import imageio in: {__file__}") # Debug print print(f"--- Debug --- Python executable: {sys.executable}") # Debug print print(f"--- Debug --- sys.path AFTER manual add: {sys.path}") # Debug print, note the change in message try: # Debug block import imageio as test_imageio_module print(f"--- Debug --- Found 'imageio' at: {test_imageio_module.__file__}") print(f"--- Debug --- Version of 'imageio': {test_imageio_module.__version__}") except ImportError as e: print(f"--- Debug --- ImportError for imageio: {e}") except AttributeError: # Handle cases where __file__ or __version__ might be missing print(f"--- Debug --- Found 'imageio', but cannot get __file__ or __version__.") # The original import line import imageio import whisper import numpy as np from PIL import Image from skimage.metrics import structural_similarity as ssim from collections import defaultdict import subprocess from jinja2 import Environment import cv2 from scipy.signal import find_peaks from skimage.feature import hog from skimage.color import rgb2gray import concurrent.futures import threading import queue import time import gc from functools import lru_cache import multiprocessing import signal import traceback import logging import json import shutil import importlib # 导入补丁模块 - 用于解决wkhtmltopdf依赖问题 try: import pdfkit_patch as pdfkit logging.info("已加载pdfkit补丁模块") except ImportError: logging.info("未找到pdfkit补丁模块,PDF生成功能可能不可用") # 设置环境变量,使用 OpenBLAS os.environ['OPENBLAS_NUM_THREADS'] = '1' os.environ['MKL_NUM_THREADS'] = '1' os.environ['NUMEXPR_NUM_THREADS'] = '1' os.environ['OMP_NUM_THREADS'] = '1' # FFmpeg路径配置 FFMPEG_BIN = os.path.join(os.path.dirname(os.path.abspath(__file__)), "ffmpeg", "bin") if not os.path.exists(FFMPEG_BIN): FFMPEG_BIN = "" # 如果目录不存在,使用系统环境变量中的FFmpeg # 配置日志 logging.basicConfig( level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s', handlers=[ logging.FileHandler('process.log', encoding='utf-8'), logging.StreamHandler() ] ) def check_dependencies(): try: # 检查FFmpeg try: subprocess.run(['ffmpeg', '-version'], capture_output=True, check=True) logging.info("FFmpeg 检查通过") except Exception as e: logging.error(f"FFmpeg 检查失败: {str(e)}") return False # 检查OpenCV try: import cv2 logging.info("OpenCV 检查通过") except Exception as e: logging.error(f"OpenCV 检查失败: {str(e)}") return False # 检查Whisper try: import whisper logging.info("Whisper 检查通过") except Exception as e: logging.error(f"Whisper 检查失败: {str(e)}") return False # 注意: wkhtmltopdf检查已禁用 # 使用pdfkit_patch模块解决wkhtmltopdf依赖问题 logging.info("wkhtmltopdf检查已禁用,仅生成HTML报告") logging.info("所有依赖项检查通过") return True except Exception as e: logging.error(f"依赖项检查失败: {str(e)}") return False # ======================== 全局配置 ======================== warnings.filterwarnings("ignore", message="FP16 is not supported on CPU; using FP32 instead") # 使用相对路径 BASE_DIR = os.path.dirname(os.path.abspath(__file__)) MODEL_DIR = os.path.join(BASE_DIR, "models") OUTPUT_DIR = os.path.join(BASE_DIR, "output") # 创建必要的目录 os.makedirs(MODEL_DIR, exist_ok=True) os.makedirs(OUTPUT_DIR, exist_ok=True) # 其他配置保持不变 SSIM_THRESHOLD = 0.85 # 关键帧去重阈值 FRAME_INTERVAL = 2 # 抽帧间隔(秒) TRANSITION_WORDS = ["接下来", "下一页", "如图"] # 过渡词过滤列 HOG_THRESHOLD = 0.7 # HOG特征相似度阈值 COLOR_THRESHOLD = 0.8 # 颜色直方图相似度阈值 WHISPER_MODEL = "base" # Whisper模型大小 PROFESSIONAL_TERMS = { "人工智能": "AI", "机器学习": "ML", "深度学习": "DL", "神经网络": "NN", "卷积神经网络": "CNN", "循环神经网络": "RNN", "自然语言处理": "NLP", "计算机视觉": "CV", "大数据": "Big Data", "云计算": "Cloud Computing" } # 专业术语词典 # 性能优化配置 MAX_WORKERS = max(1, multiprocessing.cpu_count() - 1) # 并行处理的工作线程数 BATCH_SIZE = 15 # 增加批处理大小 CACHE_SIZE = 150 # 增加缓存大小 MEMORY_LIMIT = 0.8 # 内存使用限制(占总内存的比例) TIMEOUT_SECONDS = 200 # 减少超时时间以加速处理流程 PROGRESS_UPDATE_INTERVAL = 1 # 进度更新间隔(秒) MAX_KEYFRAMES = 30 # 最大关键帧数量限制,超过此数量将进行抽样 MIN_KEYFRAMES = 5 # 最小关键帧数量要求,少于此数量将强制提取 # ======================================================== # 进度跟踪类 class ProgressTracker: def __init__(self, total_steps, description="处理中"): self.total_steps = total_steps self.current_step = 0 self.description = description self.start_time = time.time() self.last_update_time = self.start_time self._lock = threading.Lock() def update(self, step=1, message=None): with self._lock: self.current_step += step current_time = time.time() # 控制更新频率 if current_time - self.last_update_time >= PROGRESS_UPDATE_INTERVAL: elapsed = current_time - self.start_time progress = (self.current_step / self.total_steps) * 100 if message: print( f"[进度] {self.description}: {progress:.1f}% ({self.current_step}/{self.total_steps}) - {message}") else: print(f"[进度] {self.description}: {progress:.1f}% ({self.current_step}/{self.total_steps})") self.last_update_time = current_time def complete(self, message="完成"): with self._lock: elapsed = time.time() - self.start_time print(f"[完成] {self.description}: 100% - {message} (耗时: {elapsed:.1f}秒)") # 超时处理类 class TimeoutHandler: def __init__(self, timeout_seconds=TIMEOUT_SECONDS): self.timeout_seconds = timeout_seconds self.timer = None self._lock = threading.Lock() def start(self, operation_name): with self._lock: if self.timer: self.timer.cancel() self.timer = threading.Timer(self.timeout_seconds, self._timeout_callback, args=[operation_name]) self.timer.start() print(f"[信息] 开始{operation_name},超时时间: {self.timeout_seconds}秒") def stop(self): with self._lock: if self.timer: self.timer.cancel() self.timer = None def _timeout_callback(self, operation_name): print(f"[警告] {operation_name}操作超时,正在尝试恢复...") # 这里可以添加恢复逻辑 # ---------------------- 核心功能模块 ---------------------- class VideoProcessor: def __init__(self): os.environ["PATH"] = FFMPEG_BIN + os.pathsep + os.environ["PATH"] self.frame_cache = {} self.feature_cache = {} self._lock = threading.Lock() self.timeout_handler = TimeoutHandler() @staticmethod def check_ffmpeg(): """验证FFmpeg可用性""" try: subprocess.run(["ffmpeg", "-version"], check=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE) print("[系统] FFmpeg验证成功") return True except Exception as e: print(f"[错误] FFmpeg验证失败: {str(e)}") return False @lru_cache(maxsize=CACHE_SIZE) def calculate_color_histogram(self, frame_key): """计算颜色直方图特征(带缓存)""" frame = self.frame_cache.get(frame_key) if frame is None: return None hist = cv2.calcHist([frame], [0, 1, 2], None, [8, 8, 8], [0, 256, 0, 256, 0, 256]) cv2.normalize(hist, hist) return hist.flatten() @lru_cache(maxsize=CACHE_SIZE) def calculate_hog_features(self, frame_key): """计算HOG特征(带缓存)""" frame = self.frame_cache.get(frame_key) if frame is None: return None gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) features = hog(gray, orientations=8, pixels_per_cell=(16, 16), cells_per_block=(1, 1), visualize=False) return features @staticmethod def is_ppt_transition(frame1, frame2): """检测PPT页面切换""" # 转换为灰度图 gray1 = cv2.cvtColor(frame1, cv2.COLOR_BGR2GRAY) gray2 = cv2.cvtColor(frame2, cv2.COLOR_BGR2GRAY) # 计算边缘 edges1 = cv2.Canny(gray1, 100, 200) edges2 = cv2.Canny(gray2, 100, 200) # 计算边缘差异 diff = cv2.absdiff(edges1, edges2) return np.mean(diff) > 50 # 阈值可调整 @staticmethod def is_blank_frame(frame, threshold=30): """检测是否为无信息帧(纯黑屏或纯白屏)""" try: # 转换为灰度图 gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) # 计算图像统计特征 mean = np.mean(gray) std_dev = np.std(gray) # 检查是否为纯黑或纯白 is_black = mean < 10 and std_dev < 5 is_white = mean > 245 and std_dev < 5 # 检查是否有足够的细节 has_detail = std_dev > threshold return is_black or is_white or not has_detail except Exception as e: print(f"[警告] 检查无信息帧时出错: {str(e)}") return True def process_frame_batch(self, frames_batch, start_idx): """处理一批帧""" results = [] for i, frame in enumerate(frames_batch): idx = start_idx + i frame_key = f"frame_{idx}" self.frame_cache[frame_key] = frame results.append((idx, frame)) return results def extract_keyframes(self, video_path: str) -> tuple: """提取去重关键帧及其时间戳(多特征融合,并行处理)""" try: self.timeout_handler.start("关键帧提取") reader = imageio.get_reader(video_path) fps = reader.get_meta_data()["fps"] total_frames = reader.count_frames() duration = reader.get_meta_data().get("duration", total_frames / fps) print(f"[信息] 视频总帧数: {total_frames}, 时长: {duration:.2f}秒") keyframes = [] timestamps = [] prev_frame = None frame_count = 0 # 创建进度跟踪器 progress = ProgressTracker(total_frames, "关键帧提取") # 设置最后处理帧的阈值和超时 last_frames_threshold = 30 # 增加到30帧 last_frame_time = time.time() last_frame_timeout = 10 # 降低到10秒超时 # 批处理大小动态调整 current_batch_size = BATCH_SIZE # 使用队列存储结果 result_queue = queue.Queue() # 最后阶段的简化处理标志 simplified_processing = False # 短视频处理标志 - 小于30秒的视频被视为短视频 is_short_video = duration < 30 if is_short_video: logging.info(f"检测到短视频 ({duration:.2f}秒),使用密集采样模式") # 短视频采样间隔减少,确保能捕获足够帧 sample_interval = max(int(fps * 0.5), 1) # 每0.5秒一帧 else: # 优化:计算抽样间隔 # 如果视频很长,增加抽样间隔 if total_frames > fps * 60 * 10: # 10分钟以上的视频 sample_interval = max(int(fps * 3), 1) # 每3秒抽取一帧 logging.info(f"视频较长,使用增大抽样间隔: {sample_interval}帧") else: sample_interval = max(int(fps * FRAME_INTERVAL), 1) # 使用默认间隔 logging.info(f"使用抽样间隔: {sample_interval}帧 (约{sample_interval/fps:.1f}秒/帧)") # 使用线程池进行并行处理 with concurrent.futures.ThreadPoolExecutor(max_workers=MAX_WORKERS) as executor: futures = [] frames_batch = [] batch_start_idx = 0 try: # 修改为按间隔抽取帧 # 读取所有帧,短视频使用更密集采样 for idx, frame in enumerate(reader): # 更新进度 progress.update(1) # 只处理符合抽样间隔的帧 if not is_short_video and idx % sample_interval != 0: continue elif is_short_video and idx % sample_interval != 0: # 短视频也按间隔处理,但间隔更小 continue # 检查是否接近结束 if idx >= total_frames - last_frames_threshold: if not simplified_processing: print("[信息] 进入最后阶段,启用简化处理模式") simplified_processing = True # 清理现有资源 self.frame_cache.clear() self.feature_cache.clear() gc.collect() current_time = time.time() if current_time - last_frame_time > last_frame_timeout: print(f"[警告] 处理最后{last_frames_threshold}帧时卡住,跳过剩余帧") # 强制处理当前批次 if frames_batch: future = executor.submit(self.process_frame_batch, frames_batch, batch_start_idx) futures.append(future) break # 在最后阶段使用最小批处理大小 current_batch_size = 1 last_frame_time = current_time curr_time = idx / fps # 检查是否为无信息帧(短视频时使用宽松标准) if not is_short_video and self.is_blank_frame(frame, simplified=True): continue elif is_short_video and self.is_blank_frame(frame, threshold=50): # 短视频使用更宽松的阈值 continue frames_batch.append(frame) # 当批次达到指定大小时提交处理 if len(frames_batch) >= current_batch_size: future = executor.submit(self.process_frame_batch, frames_batch, batch_start_idx) futures.append(future) batch_start_idx += len(frames_batch) frames_batch = [] # 及时清理完成的future self._clean_completed_futures(futures, result_queue) # 强制垃圾回收 if frame_count % 20 == 0: # 更频繁的垃圾回收 gc.collect() # 处理剩余的帧 if frames_batch: future = executor.submit(self.process_frame_batch, frames_batch, batch_start_idx) futures.append(future) # 等待所有future完成,但设置更短的超时 try: for future in concurrent.futures.as_completed(futures, timeout=15): try: batch_results = future.result(timeout=3) # 更短的超时 for idx, frame in batch_results: result_queue.put((idx, frame)) except Exception as e: print(f"[警告] 处理批次时出错: {str(e)}") except concurrent.futures.TimeoutError: print("[警告] 部分批次处理超时,继续处理已完成的结果") except Exception as e: print(f"[警告] 帧处理过程中出错: {str(e)}") finally: # 处理队列中的所有结果 while not result_queue.empty(): try: idx, frame = result_queue.get_nowait() curr_time = idx / fps # 使用简化版本的特征比较(短视频降低相似度阈值) if prev_frame is not None: try: similarity_threshold = 0.6 if is_short_video else 0.8 if not self._is_frame_different(prev_frame, frame, simplified=True, threshold=similarity_threshold): continue except Exception as e: print(f"[警告] 特征比较失败: {str(e)}") continue keyframes.append(Image.fromarray(frame)) timestamps.append(curr_time) prev_frame = frame frame_count += 1 # 在最后阶段更频繁地清理资源 if simplified_processing and frame_count % 5 == 0: gc.collect() except queue.Empty: break reader.close() print(f"[图像] 关键帧提取完成,共{len(keyframes)}帧") # 检查是否达到最小关键帧要求 if len(keyframes) < MIN_KEYFRAMES and total_frames > 0: logging.info(f"检测到关键帧数量不足({len(keyframes)}<{MIN_KEYFRAMES}),进行强制提取") # 重新打开视频并直接均匀采样 try: reader = imageio.get_reader(video_path) # 计算均匀采样点 sample_points = [int(i * total_frames / MIN_KEYFRAMES) for i in range(MIN_KEYFRAMES)] # 清空现有关键帧 keyframes = [] timestamps = [] for i, frame_idx in enumerate(sample_points): try: # 跳到指定帧 frame = reader.get_data(frame_idx) keyframes.append(Image.fromarray(frame)) timestamps.append(frame_idx / fps) logging.info(f"强制提取第{i+1}个关键帧: 帧索引={frame_idx}, 时间={frame_idx/fps:.2f}秒") except Exception as e: logging.error(f"强制提取关键帧失败: {str(e)}") reader.close() logging.info(f"强制提取完成,共{len(keyframes)}帧") except Exception as e: logging.error(f"强制提取关键帧过程出错: {str(e)}") # 优化:限制最大关键帧数量,通过均匀采样减少 if len(keyframes) > MAX_KEYFRAMES: logging.info(f"关键帧数量({len(keyframes)})超过限制({MAX_KEYFRAMES}),进行抽样") # 计算采样间隔 sample_rate = len(keyframes) / MAX_KEYFRAMES sampled_keyframes = [] sampled_timestamps = [] # 均匀采样 for i in range(MAX_KEYFRAMES): idx = min(int(i * sample_rate), len(keyframes) - 1) sampled_keyframes.append(keyframes[idx]) sampled_timestamps.append(timestamps[idx]) keyframes = sampled_keyframes timestamps = sampled_timestamps logging.info(f"抽样后关键帧数量: {len(keyframes)}") # 清理资源 self.frame_cache.clear() self.feature_cache.clear() gc.collect() # 停止超时处理 self.timeout_handler.stop() progress.complete(f"提取了{len(keyframes)}个关键帧") return keyframes, duration except Exception as e: print(f"[错误] 关键帧提取失败: {str(e)}") self.timeout_handler.stop() return [], 0.0 def _clean_completed_futures(self, futures, result_queue): """清理已完成的future并存储结果""" done = [] for future in futures: if future.done(): try: batch_results = future.result(timeout=1) for result in batch_results: result_queue.put(result) done.append(future) except Exception as e: print(f"[警告] 获取future结果时出错: {str(e)}") # 从futures列表中移除已完成的 for future in done: futures.remove(future) # 强制垃圾回收 if len(done) > 0: gc.collect() def _is_frame_different(self, frame1, frame2, simplified=False, threshold=0.8): """简化版本的帧差异检测""" if simplified: try: # 使用更简单的比较方法 gray1 = cv2.cvtColor(frame1, cv2.COLOR_BGR2GRAY) gray2 = cv2.cvtColor(frame2, cv2.COLOR_BGR2GRAY) # 计算平均差异 diff = cv2.absdiff(gray1, gray2) mean_diff = np.mean(diff) # 如果差异小于阈值,认为帧相同 return mean_diff > threshold * 10 # 可调整的阈值 except Exception: return True else: # 完整的特征比较逻辑 return True # 默认认为不同,具体实现可以根据需要添加 def is_blank_frame(self, frame, simplified=False): """检测是否为无信息帧(支持简化版本)""" try: if simplified: # 简化版本:只检查亮度和方差 gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) mean = np.mean(gray) std = np.std(gray) return mean < 10 or mean > 245 or std < 20 else: # 完整版本的检查逻辑 return super().is_blank_frame(frame) except Exception as e: print(f"[警告] 检查无信息帧时出错: {str(e)}") return True @staticmethod def transcribe_audio(video_path: str, model_name: str = WHISPER_MODEL) -> list: """语音识别与时间戳获取(支持中英文混合)""" try: # 创建进度跟踪器 progress = ProgressTracker(100, "语音识别") progress.update(10, "加载模型") # 使用更大的模型提高准确率 model = whisper.load_model(model_name, device="cpu", download_root=MODEL_DIR) progress.update(20, "开始转写") # 配置转写参数 result = model.transcribe( video_path, fp16=False, language="zh", task="transcribe", verbose=True, initial_prompt="这是一段包含中英文的PPT讲解视频,可能包含专业术语。" ) progress.update(60, "处理转写结果") segments = result.get("segments", []) # 后处理:专业术语替换 for i, seg in enumerate(segments): text = seg["text"] for cn, en in PROFESSIONAL_TERMS.items(): text = text.replace(cn, f"{cn}({en})") seg["text"] = text progress.update(30 / len(segments), f"处理第{i + 1}/{len(segments)}个片段") progress.complete(f"识别了{len(segments)}个语音片段") return segments except Exception as e: print(f"[错误] 语音识别失败: {str(e)}") return [] # ---------------------- 业务逻辑模块 ---------------------- class ContentAligner: @staticmethod def generate_page_intervals(timestamps: list, duration: float) -> list: """生成页面时间段""" intervals = [] for i in range(len(timestamps)): start = timestamps[i] end = timestamps[i + 1] if i < len(timestamps) - 1 else duration intervals.append((start, end)) return intervals @staticmethod @lru_cache(maxsize=CACHE_SIZE) def calculate_text_similarity(text1: str, text2: str) -> float: """计算文本相似度(带缓存)""" # 使用简单的词重叠度计算 words1 = set(re.findall(r'\w+', text1.lower())) words2 = set(re.findall(r'\w+', text2.lower())) if not words1 or not words2: return 0.0 intersection = words1.intersection(words2) union = words1.union(words2) return len(intersection) / len(union) @staticmethod def _process_segment(seg, seg_start, intervals, all_segments): """处理单个语音片段(用于并行处理)""" # 首先尝试时间戳匹配 for page_idx, (start, end) in enumerate(intervals): if start <= seg_start < end: return page_idx, seg # 如果时间戳匹配失败,尝试文本相似度匹配 best_page = None best_score = 0.0 for page_idx, (start, end) in enumerate(intervals): # 获取该页面的所有文本 page_text = " ".join([s["text"] for s in all_segments if start <= s["start"] < end]) similarity = ContentAligner.calculate_text_similarity(seg["text"], page_text) if similarity > best_score: best_score = similarity best_page = page_idx if best_page is not None: return best_page, seg return None @staticmethod def find_best_match(segments: list, intervals: list) -> dict: """为每个语音片段找到最佳匹配的页面(并行处理)""" page_texts = defaultdict(list) unmatched_segments = [] # 创建进度跟踪器 progress = ProgressTracker(len(segments), "内容对齐") # 使用线程池进行并行处理 with concurrent.futures.ThreadPoolExecutor(max_workers=MAX_WORKERS) as executor: futures = [] for seg in segments: seg_start = seg["start"] future = executor.submit(ContentAligner._process_segment, seg, seg_start, intervals, segments) futures.append(future) # 收集结果 for i, future in enumerate(concurrent.futures.as_completed(futures)): try: result = future.result() if result: page_idx, seg = result page_texts[page_idx].append(seg) else: unmatched_segments.append(seg) progress.update(1, f"处理第{i + 1}/{len(segments)}个片段") except Exception as e: print(f"[警告] 处理语音片段时出错: {str(e)}") # 处理未匹配的片段 if unmatched_segments: print(f"[警告] 发现{len(unmatched_segments)}个未匹配的语音片段") # 将未匹配片段添加到最近的页面 for seg in unmatched_segments: closest_page = min(range(len(intervals)), key=lambda i: abs(seg["start"] - (intervals[i][0] + intervals[i][1]) / 2)) page_texts[closest_page].append(seg) progress.complete(f"对齐了{len(segments)}个语音片段") return page_texts @staticmethod def align_content(video_path: str, timestamps: list) -> list: """语音-画面对齐主逻辑(改进版,并行处理)""" try: # 创建超时处理器 timeout_handler = TimeoutHandler() timeout_handler.start("内容对齐") # 获取视频时长 try: reader = imageio.get_reader(video_path) duration = reader.get_meta_data()["duration"] reader.close() except: duration = timestamps[-1] + FRAME_INTERVAL # 语音识别 segments = VideoProcessor.transcribe_audio(video_path) if not segments: logging.warning("未识别到语音内容,将生成空文本摘要") segments = [] # 生成页面时间间隔 intervals = ContentAligner.generate_page_intervals(timestamps, duration) # 使用改进的匹配算法(并行处理) page_texts = ContentAligner.find_best_match(segments, intervals) # 生成最终的对齐数据 aligned_data = [] for idx in range(len(intervals)): text = " ".join([seg["text"] for seg in page_texts.get(idx, [])]) aligned_data.append({ "page": idx, "start_time": intervals[idx][0], "end_time": intervals[idx][1], "text": text if text else "未识别到相关语音内容" }) # 停止超时处理 timeout_handler.stop() return aligned_data except Exception as e: logging.error(f"内容对齐失败: {str(e)}") logging.error(traceback.format_exc()) return [] # ---------------------- 摘要生成模块 ---------------------- class SummaryGenerator: @staticmethod def optimize_text(text: str) -> str: """优化文本内容""" # 替换专业术语 for term, abbr in PROFESSIONAL_TERMS.items(): text = text.replace(term, f'{term} ({abbr})') # 优化过渡词 for word in TRANSITION_WORDS: text = text.replace(word, f'{word}') return text @staticmethod def generate_html(aligned_data: list, keyframes: list, output_dir: str): """生成HTML格式的报告""" # 创建临时目录用于存储图片 temp_img_dir = os.path.join(output_dir, "temp_images") os.makedirs(temp_img_dir, exist_ok=True) # 创建进度跟踪器 progress = ProgressTracker(len(aligned_data) + 1, "HTML报告生成") # 创建超时处理器 timeout_handler = TimeoutHandler() timeout_handler.start("HTML报告生成") try: # 检查输出目录权限 try: # 尝试在输出目录创建测试文件以验证权限 test_file = os.path.join(output_dir, "test_write_permission.tmp") with open(test_file, 'w') as f: f.write("test") os.remove(test_file) logging.info(f"输出目录权限检查通过: {output_dir}") except Exception as e: logging.error(f"输出目录权限检查失败: {str(e)},尝试使用当前目录") # 如果指定的输出目录不可写,则使用当前目录 output_dir = os.path.abspath(".") temp_img_dir = os.path.join(output_dir, "temp_images") os.makedirs(temp_img_dir, exist_ok=True) logging.info(f"已切换到当前目录作为输出: {output_dir}") # 性能优化:减小图片大小,加快处理 logging.info("优化图片尺寸以提高性能") optimized_keyframes = [] for frame in keyframes: # 限制图片最大尺寸为720p if frame.width > 1280 or frame.height > 720: aspect_ratio = frame.width / frame.height if aspect_ratio > 16/9: # 宽屏 new_width = 1280 new_height = int(new_width / aspect_ratio) else: new_height = 720 new_width = int(new_height * aspect_ratio) frame = frame.resize((new_width, new_height), Image.LANCZOS) optimized_keyframes.append(frame) keyframes = optimized_keyframes logging.info("图片尺寸优化完成") # 处理所有帧 pages_data = [] for idx, frame in enumerate(keyframes): try: page_data = SummaryGenerator._process_frame(idx, frame, aligned_data, temp_img_dir) if page_data: pages_data.append(page_data) progress.update(1, f"处理第 {idx + 1} 页") except Exception as e: logging.error(f"处理帧 {idx} 时出错: {str(e)}") logging.error(traceback.format_exc()) continue # 检查是否有成功处理的页面 if not pages_data: logging.error("没有成功处理任何页面,无法生成HTML报告") raise RuntimeError("没有成功处理任何页面,无法生成HTML报告") # 生成HTML模板 template = Environment().from_string(""" PPT视频结构化摘要

PPT视频结构化摘要

{% for page in pages %}
页面截图
{{ page.text }}
{% endfor %} """) # 保存HTML文件 output_path = os.path.join(output_dir, "summary.html") try: with open(output_path, "w", encoding="utf-8") as f: f.write(template.render(pages=pages_data)) logging.info(f"HTML报告已生成: {output_path}") # 检查文件是否已成功写入 if os.path.exists(output_path) and os.path.getsize(output_path) > 0: logging.info(f"HTML报告验证成功: {output_path},大小: {os.path.getsize(output_path)} 字节") else: logging.error(f"HTML报告生成失败: 文件不存在或为空: {output_path}") raise IOError(f"HTML报告生成失败: 文件不存在或为空: {output_path}") except Exception as e: logging.error(f"HTML报告保存失败: {str(e)}") # 尝试使用备用路径 backup_path = os.path.join(os.path.abspath("."), f"summary_{int(time.time())}.html") logging.info(f"尝试使用备用路径保存HTML: {backup_path}") with open(backup_path, "w", encoding="utf-8") as f: f.write(template.render(pages=pages_data)) logging.info(f"HTML报告已使用备用路径生成: {backup_path}") output_path = backup_path # 更新输出路径 # 停止超时处理 timeout_handler.stop() progress.complete(f"HTML报告生成完成: {output_path}") # 打印明确的文件位置信息以便用户查找 print(f"\n[重要] HTML报告已生成在: {os.path.abspath(output_path)}\n") except Exception as e: logging.error(f"HTML报告生成过程中发生错误: {str(e)}") try: logging.error(traceback.format_exc()) except Exception: logging.error("无法获取详细错误信息,traceback模块不可用") # 停止超时处理 timeout_handler.stop() raise finally: # 清理临时文件 try: if os.path.exists(temp_img_dir): for f in os.listdir(temp_img_dir): try: os.remove(os.path.join(temp_img_dir, f)) except Exception as e: logging.error(f"删除临时图片文件失败: {str(e)}") try: os.rmdir(temp_img_dir) logging.info("已删除临时图片目录") except Exception as e: logging.error(f"删除临时图片目录失败: {str(e)}") except Exception as e: logging.error(f"清理临时文件时出错: {str(e)}") return output_path # 返回生成的HTML文件路径 @staticmethod def _process_frame(idx, frame, aligned_data, temp_img_dir): """处理单个帧""" try: img_path = os.path.join(temp_img_dir, f"page_{idx}.jpg") frame.save(img_path) with open(img_path, "rb") as f: img_data = base64.b64encode(f.read()).decode("utf-8") return { "num": idx + 1, "time": f"{aligned_data[idx]['start_time']:.1f}s - {aligned_data[idx]['end_time']:.1f}s", "image": f"data:image/jpeg;base64,{img_data}", "text": SummaryGenerator.optimize_text(aligned_data[idx]["text"]) } except Exception as e: logging.error(f"处理帧 {idx} 时出错: {str(e)}") return None @staticmethod def generate_pdf(aligned_data: list, keyframes: list, output_dir: str): """生成PDF格式的报告""" # 首先生成HTML文件 html_path = os.path.join(output_dir, "summary.html") if not os.path.exists(html_path): SummaryGenerator.generate_html(aligned_data, keyframes, output_dir) # 创建进度跟踪器 progress = ProgressTracker(1, "PDF报告生成") # 创建超时处理器 timeout_handler = TimeoutHandler() timeout_handler.start("PDF报告生成") try: logging.info("开始将HTML转换为PDF...") # 设置PDF配置选项 options = { 'page-size': 'A4', 'margin-top': '0.75in', 'margin-right': '0.75in', 'margin-bottom': '0.75in', 'margin-left': '0.75in', 'encoding': 'UTF-8', 'no-outline': None, 'quiet': '' } # 生成PDF文件路径 pdf_path = os.path.join(output_dir, "summary.pdf") # 使用pdfkit生成PDF try: pdfkit.from_file(html_path, pdf_path, options=options) logging.info(f"PDF报告已生成: {pdf_path}") # 停止超时处理 timeout_handler.stop() progress.complete("PDF报告生成完成") return True except Exception as e: logging.error(f"PDF生成失败: {str(e)}") return False except Exception as e: logging.error(f"PDF报告生成过程出错: {str(e)}") timeout_handler.stop() return False @classmethod def generate_all(cls, aligned_data: list, keyframes: list, output_dir: str): """生成所有格式报告""" try: # 首先生成HTML报告 html_path = cls.generate_html(aligned_data, keyframes, output_dir) # 输出明确的报告位置提示 print(f"\n[完成] 报告生成成功!\n") print(f"HTML报告地址: {os.path.abspath(html_path)}") # 尝试生成PDF报告 pdf_success = False try: # 检查pdfkit模块是否可用 if 'pdfkit' in sys.modules: pdf_success = cls.generate_pdf(aligned_data, keyframes, output_dir) else: logging.info("pdfkit模块不可用,跳过PDF生成") except Exception as e: logging.error(f"PDF报告生成失败: {str(e)}") if not pdf_success: logging.warning("PDF生成功能不可用或生成失败,仅生成HTML报告") return True except Exception as e: logging.error(f"报告生成出错: {str(e)}") logging.error(traceback.format_exc()) # 创建一个极简的报告,以确保用户至少能看到一些结果 try: fallback_path = os.path.join(os.path.abspath("."), "emergency_report.html") with open(fallback_path, "w", encoding="utf-8") as f: f.write(f""" 应急报告

视频处理完成,但报告生成失败

处理过程中发生了以下错误:

{str(e)}

请查看日志文件以获取更多信息。

""") print(f"\n[警告] 正常报告生成失败,已创建应急报告: {fallback_path}\n") except Exception: logging.error("创建应急报告也失败了") return False # ---------------------- 主流程控制 ---------------------- def main_process(video_path, output_dir=None, progress_callback=None): try: logging.info(f"开始处理视频文件: {video_path}") # 设置输出目录 if output_dir is None: output_dir = OUTPUT_DIR # 检查输出目录是否存在,如果不存在则创建 try: os.makedirs(output_dir, exist_ok=True) logging.info(f"使用输出目录: {output_dir}") # 检查输出目录权限 test_file = os.path.join(output_dir, "test_permission.tmp") with open(test_file, "w") as f: f.write("test") os.remove(test_file) except Exception as e: logging.error(f"输出目录异常: {str(e)},使用当前目录作为替代") output_dir = os.path.abspath(".") os.makedirs(output_dir, exist_ok=True) logging.info(f"已切换到当前目录: {output_dir}") # 进度回调函数 def update_progress(progress, message=None): if progress_callback: try: progress_callback(progress, message) except Exception as e: logging.error(f"进度回调函数执行失败: {str(e)}") logging.info(f"处理进度: {progress}% - {message if message else ''}") # 初始化进度 update_progress(0, "开始处理视频") # 检查视频文件是否存在 if not os.path.exists(video_path): error_msg = f"视频文件不存在: {video_path}" logging.error(error_msg) update_progress(0, f"错误: {error_msg}") raise FileNotFoundError(error_msg) # 检查文件大小 file_size = os.path.getsize(video_path) / (1024 * 1024) # 转换为MB logging.info(f"视频文件大小: {file_size:.2f}MB") # 检查文件是否为空 if file_size == 0: error_msg = "视频文件为空" logging.error(error_msg) update_progress(0, f"错误: {error_msg}") raise ValueError(error_msg) # 检查文件是否可读 try: with open(video_path, 'rb') as f: f.read(1024) # 尝试读取一小块数据 except Exception as e: error_msg = f"视频文件无法读取: {str(e)}" logging.error(error_msg) update_progress(0, f"错误: {error_msg}") raise IOError(error_msg) # 检查依赖项 update_progress(5, "检查系统依赖") if not check_dependencies(): error_msg = "依赖项检查失败" logging.error(error_msg) update_progress(5, f"错误: {error_msg}") raise RuntimeError(f"{error_msg},请检查日志获取详细信息") update_progress(10, "依赖项检查通过") # 初始化视频处理器 processor = VideoProcessor() # 提取关键帧 logging.info("开始提取关键帧...") update_progress(15, "开始提取关键帧") try: keyframes, duration = processor.extract_keyframes(video_path) if not keyframes: error_msg = "关键帧提取失败:未能提取到任何关键帧" logging.error(error_msg) update_progress(15, f"错误: 未能提取到关键帧") raise RuntimeError(error_msg) logging.info(f"成功提取 {len(keyframes)} 个关键帧,视频时长:{duration:.2f}秒") update_progress(40, f"已提取 {len(keyframes)} 个关键帧") except Exception as e: error_msg = f"关键帧提取过程出错: {str(e)}" logging.error(error_msg) try: logging.error(traceback.format_exc()) except Exception: logging.error("无法获取详细错误信息,traceback模块不可用") update_progress(15, f"错误: 关键帧提取失败 - {str(e)}") raise RuntimeError(error_msg) # 转录音频 logging.info("开始转录音频...") update_progress(45, "开始转录音频") try: segments = VideoProcessor.transcribe_audio(video_path) if not segments: logging.warning("音频转录失败:未能识别到任何语音内容") update_progress(45, "警告: 未识别到语音内容,将生成空文本摘要") segments = [] else: logging.info(f"成功转录 {len(segments)} 个音频片段") update_progress(65, f"已转录 {len(segments)} 个音频片段") for i, seg in enumerate(segments[:3], 1): # 只记录前三个片段作为示例 logging.debug(f"音频片段 {i}: {seg['text'][:50]}...") except Exception as e: error_msg = f"音频转录过程出错: {str(e)}" logging.error(error_msg) try: logging.error(traceback.format_exc()) except Exception: logging.error("无法获取详细错误信息,traceback模块不可用") update_progress(45, f"错误: 音频转录失败 - {str(e)}") raise RuntimeError(error_msg) # 计算时间戳 timestamps = [0] # 添加起始时间戳 for frame_idx, frame in enumerate(keyframes[1:], 1): timestamps.append(frame_idx * duration / len(keyframes)) # 对齐内容 logging.info("开始对齐内容...") update_progress(70, "开始对齐内容") try: aligned_data = ContentAligner.align_content(video_path, timestamps) if not aligned_data: error_msg = "内容对齐失败:未能生成对齐数据" logging.error(error_msg) update_progress(70, "错误: 内容对齐失败") # 创建一个空的对齐数据,以便能继续生成报告 aligned_data = [] for i in range(len(keyframes)): aligned_data.append({ "page": i, "start_time": timestamps[i], "end_time": timestamps[i+1] if i < len(timestamps)-1 else duration, "text": "未能识别到相关语音内容" }) logging.info(f"已创建{len(aligned_data)}个空内容对齐数据") update_progress(75, "使用空内容继续处理") else: logging.info(f"成功对齐 {len(aligned_data)} 个内容片段") update_progress(80, f"已对齐 {len(aligned_data)} 个内容片段") for i, data in enumerate(aligned_data[:3], 1): # 只记录前三个对齐结果作为示例 logging.debug(f"对齐片段 {i}: {data.get('start_time', 'N/A')}s - {data.get('end_time', 'N/A')}s") except Exception as e: error_msg = f"内容对齐过程出错: {str(e)}" logging.error(error_msg) try: logging.error(traceback.format_exc()) except Exception: logging.error("无法获取详细错误信息,traceback模块不可用") update_progress(70, f"错误: 内容对齐失败 - {str(e)}") # 创建一个空的对齐数据,以便能继续生成报告 aligned_data = [] for i in range(len(keyframes)): aligned_data.append({ "page": i, "start_time": timestamps[i], "end_time": timestamps[i+1] if i < len(timestamps)-1 else duration, "text": "未能识别到相关语音内容" }) logging.info(f"已创建{len(aligned_data)}个空内容对齐数据") update_progress(75, "使用空内容继续处理") # 生成总结 logging.info("开始生成总结...") update_progress(85, "开始生成报告") try: if SummaryGenerator.generate_all(aligned_data, keyframes, output_dir): logging.info(f"总结生成完成,输出目录: {output_dir}") update_progress(100, "处理完成") # 检查HTML文件是否存在 html_path = os.path.join(output_dir, "summary.html") if os.path.exists(html_path): logging.info(f"报告验证成功: {html_path}") print(f"\n[成功] 报告生成完成,位置: {os.path.abspath(html_path)}\n") else: logging.warning(f"报告文件不存在: {html_path}") print(f"\n[警告] 处理似乎完成但未找到报告文件,请检查日志\n") else: error_msg = "报告生成失败" logging.error(error_msg) update_progress(85, f"错误: {error_msg}") raise RuntimeError(error_msg) except Exception as e: error_msg = f"总结生成过程出错: {str(e)}" logging.error(error_msg) try: logging.error(traceback.format_exc()) except Exception: logging.error("无法获取详细错误信息,traceback模块不可用") update_progress(85, f"错误: 报告生成失败 - {str(e)}") # 尝试创建一个简单的报告 try: simple_html = os.path.join(output_dir, "simple_report.html") with open(simple_html, "w", encoding="utf-8") as f: f.write(f""" 简单报告

视频简单报告

完整报告生成失败,这是一个简化版本

""") # 添加关键帧 for i, frame in enumerate(keyframes): # 保存图片 img_path = os.path.join(output_dir, f"frame_{i}.jpg") frame.save(img_path) # 添加到HTML f.write(f"""

第 {i+1} 帧

关键帧 {i+1}
""") f.write("") logging.info(f"简单报告已生成: {simple_html}") print(f"\n[恢复] 创建了简单报告: {os.path.abspath(simple_html)}\n") except Exception as inner_e: logging.error(f"简单报告生成也失败了: {str(inner_e)}") raise RuntimeError(error_msg) logging.info("所有处理步骤已完成") return True except Exception as e: logging.error(f"处理过程中发生错误: {str(e)}") logging.error("详细错误信息:") try: logging.error(traceback.format_exc()) except Exception: logging.error("无法获取详细错误信息,traceback模块不可用") if progress_callback: try: progress_callback(0, f"处理失败: {str(e)}") except: pass print(f"\n[错误] 处理失败: {str(e)}\n") return False if __name__ == "__main__": try: if len(sys.argv) < 2: print("使用方法: python 毕设.py <视频文件路径>") sys.exit(1) video_path = sys.argv[1] if main_process(video_path): print("[完成] 处理成功") sys.exit(0) else: print("[错误] 处理失败,请查看日志文件了解详情") sys.exit(1) except KeyboardInterrupt: print("\n[中断] 用户中断了处理") sys.exit(130) except Exception as e: print(f"[错误] 程序执行过程中出现未处理的异常: {str(e)}") try: traceback.print_exc() except Exception: print("无法打印详细错误信息,traceback模块不可用") sys.exit(1)