diff --git a/8.0/毕设.py b/8.0/毕设.py new file mode 100644 index 0000000..c7ef014 --- /dev/null +++ b/8.0/毕设.py @@ -0,0 +1,1468 @@ +import os +import re +import base64 +import warnings +import sys # Add sys import for debugging + +# --- Manually add D:\Lib\site-packages to sys.path --- +site_packages_path = r'D:\Lib\site-packages' +if site_packages_path not in sys.path: + sys.path.append(site_packages_path) +# --- End of manual addition --- + +print(f"--- Debug --- Attempting to import imageio in: {__file__}") # Debug print +print(f"--- Debug --- Python executable: {sys.executable}") # Debug print +print(f"--- Debug --- sys.path AFTER manual add: {sys.path}") # Debug print, note the change in message +try: # Debug block + import imageio as test_imageio_module + print(f"--- Debug --- Found 'imageio' at: {test_imageio_module.__file__}") + print(f"--- Debug --- Version of 'imageio': {test_imageio_module.__version__}") +except ImportError as e: + print(f"--- Debug --- ImportError for imageio: {e}") +except AttributeError: # Handle cases where __file__ or __version__ might be missing + print(f"--- Debug --- Found 'imageio', but cannot get __file__ or __version__.") + +# The original import line +import imageio +import whisper +import numpy as np +from PIL import Image +from skimage.metrics import structural_similarity as ssim +from collections import defaultdict +import subprocess +from jinja2 import Environment +import cv2 +from scipy.signal import find_peaks +from skimage.feature import hog +from skimage.color import rgb2gray +import concurrent.futures +import threading +import queue +import time +import gc +from functools import lru_cache +import multiprocessing +import signal +import traceback +import logging +import json +import shutil +import importlib + +# 导入补丁模块 - 用于解决wkhtmltopdf依赖问题 +try: + import pdfkit_patch as pdfkit + logging.info("已加载pdfkit补丁模块") +except ImportError: + logging.info("未找到pdfkit补丁模块,PDF生成功能可能不可用") + +# 设置环境变量,使用 OpenBLAS +os.environ['OPENBLAS_NUM_THREADS'] = '1' +os.environ['MKL_NUM_THREADS'] = '1' +os.environ['NUMEXPR_NUM_THREADS'] = '1' +os.environ['OMP_NUM_THREADS'] = '1' + +# FFmpeg路径配置 +FFMPEG_BIN = os.path.join(os.path.dirname(os.path.abspath(__file__)), "ffmpeg", "bin") +if not os.path.exists(FFMPEG_BIN): + FFMPEG_BIN = "" # 如果目录不存在,使用系统环境变量中的FFmpeg + +# 配置日志 +logging.basicConfig( + level=logging.DEBUG, + format='%(asctime)s - %(levelname)s - %(message)s', + handlers=[ + logging.FileHandler('process.log', encoding='utf-8'), + logging.StreamHandler() + ] +) + +def check_dependencies(): + try: + # 检查FFmpeg + try: + subprocess.run(['ffmpeg', '-version'], capture_output=True, check=True) + logging.info("FFmpeg 检查通过") + except Exception as e: + logging.error(f"FFmpeg 检查失败: {str(e)}") + return False + + # 检查OpenCV + try: + import cv2 + logging.info("OpenCV 检查通过") + except Exception as e: + logging.error(f"OpenCV 检查失败: {str(e)}") + return False + + # 检查Whisper + try: + import whisper + logging.info("Whisper 检查通过") + except Exception as e: + logging.error(f"Whisper 检查失败: {str(e)}") + return False + + # 注意: wkhtmltopdf检查已禁用 + # 使用pdfkit_patch模块解决wkhtmltopdf依赖问题 + logging.info("wkhtmltopdf检查已禁用,仅生成HTML报告") + + logging.info("所有依赖项检查通过") + return True + except Exception as e: + logging.error(f"依赖项检查失败: {str(e)}") + return False + +# ======================== 全局配置 ======================== +warnings.filterwarnings("ignore", message="FP16 is not supported on CPU; using FP32 instead") + +# 使用相对路径 +BASE_DIR = os.path.dirname(os.path.abspath(__file__)) +MODEL_DIR = os.path.join(BASE_DIR, "models") +OUTPUT_DIR = os.path.join(BASE_DIR, "output") + +# 创建必要的目录 +os.makedirs(MODEL_DIR, exist_ok=True) +os.makedirs(OUTPUT_DIR, exist_ok=True) + +# 其他配置保持不变 +SSIM_THRESHOLD = 0.85 # 关键帧去重阈值 +FRAME_INTERVAL = 2 # 抽帧间隔(秒) +TRANSITION_WORDS = ["接下来", "下一页", "如图"] # 过渡词过滤列 +HOG_THRESHOLD = 0.7 # HOG特征相似度阈值 +COLOR_THRESHOLD = 0.8 # 颜色直方图相似度阈值 +WHISPER_MODEL = "base" # Whisper模型大小 +PROFESSIONAL_TERMS = { + "人工智能": "AI", + "机器学习": "ML", + "深度学习": "DL", + "神经网络": "NN", + "卷积神经网络": "CNN", + "循环神经网络": "RNN", + "自然语言处理": "NLP", + "计算机视觉": "CV", + "大数据": "Big Data", + "云计算": "Cloud Computing" +} # 专业术语词典 + +# 性能优化配置 +MAX_WORKERS = max(1, multiprocessing.cpu_count() - 1) # 并行处理的工作线程数 +BATCH_SIZE = 15 # 增加批处理大小 +CACHE_SIZE = 150 # 增加缓存大小 +MEMORY_LIMIT = 0.8 # 内存使用限制(占总内存的比例) +TIMEOUT_SECONDS = 200 # 减少超时时间以加速处理流程 +PROGRESS_UPDATE_INTERVAL = 1 # 进度更新间隔(秒) +MAX_KEYFRAMES = 30 # 最大关键帧数量限制,超过此数量将进行抽样 +MIN_KEYFRAMES = 5 # 最小关键帧数量要求,少于此数量将强制提取 + + +# ======================================================== + +# 进度跟踪类 +class ProgressTracker: + def __init__(self, total_steps, description="处理中"): + self.total_steps = total_steps + self.current_step = 0 + self.description = description + self.start_time = time.time() + self.last_update_time = self.start_time + self._lock = threading.Lock() + + def update(self, step=1, message=None): + with self._lock: + self.current_step += step + current_time = time.time() + + # 控制更新频率 + if current_time - self.last_update_time >= PROGRESS_UPDATE_INTERVAL: + elapsed = current_time - self.start_time + progress = (self.current_step / self.total_steps) * 100 + + if message: + print( + f"[进度] {self.description}: {progress:.1f}% ({self.current_step}/{self.total_steps}) - {message}") + else: + print(f"[进度] {self.description}: {progress:.1f}% ({self.current_step}/{self.total_steps})") + + self.last_update_time = current_time + + def complete(self, message="完成"): + with self._lock: + elapsed = time.time() - self.start_time + print(f"[完成] {self.description}: 100% - {message} (耗时: {elapsed:.1f}秒)") + + +# 超时处理类 +class TimeoutHandler: + def __init__(self, timeout_seconds=TIMEOUT_SECONDS): + self.timeout_seconds = timeout_seconds + self.timer = None + self._lock = threading.Lock() + + def start(self, operation_name): + with self._lock: + if self.timer: + self.timer.cancel() + self.timer = threading.Timer(self.timeout_seconds, self._timeout_callback, args=[operation_name]) + self.timer.start() + print(f"[信息] 开始{operation_name},超时时间: {self.timeout_seconds}秒") + + def stop(self): + with self._lock: + if self.timer: + self.timer.cancel() + self.timer = None + + def _timeout_callback(self, operation_name): + print(f"[警告] {operation_name}操作超时,正在尝试恢复...") + # 这里可以添加恢复逻辑 + + +# ---------------------- 核心功能模块 ---------------------- +class VideoProcessor: + def __init__(self): + os.environ["PATH"] = FFMPEG_BIN + os.pathsep + os.environ["PATH"] + self.frame_cache = {} + self.feature_cache = {} + self._lock = threading.Lock() + self.timeout_handler = TimeoutHandler() + + @staticmethod + def check_ffmpeg(): + """验证FFmpeg可用性""" + try: + subprocess.run(["ffmpeg", "-version"], check=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE) + print("[系统] FFmpeg验证成功") + return True + except Exception as e: + print(f"[错误] FFmpeg验证失败: {str(e)}") + return False + + @lru_cache(maxsize=CACHE_SIZE) + def calculate_color_histogram(self, frame_key): + """计算颜色直方图特征(带缓存)""" + frame = self.frame_cache.get(frame_key) + if frame is None: + return None + hist = cv2.calcHist([frame], [0, 1, 2], None, [8, 8, 8], [0, 256, 0, 256, 0, 256]) + cv2.normalize(hist, hist) + return hist.flatten() + + @lru_cache(maxsize=CACHE_SIZE) + def calculate_hog_features(self, frame_key): + """计算HOG特征(带缓存)""" + frame = self.frame_cache.get(frame_key) + if frame is None: + return None + gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) + features = hog(gray, orientations=8, pixels_per_cell=(16, 16), + cells_per_block=(1, 1), visualize=False) + return features + + @staticmethod + def is_ppt_transition(frame1, frame2): + """检测PPT页面切换""" + # 转换为灰度图 + gray1 = cv2.cvtColor(frame1, cv2.COLOR_BGR2GRAY) + gray2 = cv2.cvtColor(frame2, cv2.COLOR_BGR2GRAY) + + # 计算边缘 + edges1 = cv2.Canny(gray1, 100, 200) + edges2 = cv2.Canny(gray2, 100, 200) + + # 计算边缘差异 + diff = cv2.absdiff(edges1, edges2) + return np.mean(diff) > 50 # 阈值可调整 + + @staticmethod + def is_blank_frame(frame, threshold=30): + """检测是否为无信息帧(纯黑屏或纯白屏)""" + try: + # 转换为灰度图 + gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) + + # 计算图像统计特征 + mean = np.mean(gray) + std_dev = np.std(gray) + + # 检查是否为纯黑或纯白 + is_black = mean < 10 and std_dev < 5 + is_white = mean > 245 and std_dev < 5 + + # 检查是否有足够的细节 + has_detail = std_dev > threshold + + return is_black or is_white or not has_detail + except Exception as e: + print(f"[警告] 检查无信息帧时出错: {str(e)}") + return True + + def process_frame_batch(self, frames_batch, start_idx): + """处理一批帧""" + results = [] + for i, frame in enumerate(frames_batch): + idx = start_idx + i + frame_key = f"frame_{idx}" + self.frame_cache[frame_key] = frame + results.append((idx, frame)) + return results + + def extract_keyframes(self, video_path: str) -> tuple: + """提取去重关键帧及其时间戳(多特征融合,并行处理)""" + try: + self.timeout_handler.start("关键帧提取") + reader = imageio.get_reader(video_path) + fps = reader.get_meta_data()["fps"] + total_frames = reader.count_frames() + duration = reader.get_meta_data().get("duration", total_frames / fps) + print(f"[信息] 视频总帧数: {total_frames}, 时长: {duration:.2f}秒") + + keyframes = [] + timestamps = [] + prev_frame = None + frame_count = 0 + + # 创建进度跟踪器 + progress = ProgressTracker(total_frames, "关键帧提取") + + # 设置最后处理帧的阈值和超时 + last_frames_threshold = 30 # 增加到30帧 + last_frame_time = time.time() + last_frame_timeout = 10 # 降低到10秒超时 + + # 批处理大小动态调整 + current_batch_size = BATCH_SIZE + + # 使用队列存储结果 + result_queue = queue.Queue() + + # 最后阶段的简化处理标志 + simplified_processing = False + + # 短视频处理标志 - 小于30秒的视频被视为短视频 + is_short_video = duration < 30 + if is_short_video: + logging.info(f"检测到短视频 ({duration:.2f}秒),使用密集采样模式") + # 短视频采样间隔减少,确保能捕获足够帧 + sample_interval = max(int(fps * 0.5), 1) # 每0.5秒一帧 + else: + # 优化:计算抽样间隔 + # 如果视频很长,增加抽样间隔 + if total_frames > fps * 60 * 10: # 10分钟以上的视频 + sample_interval = max(int(fps * 3), 1) # 每3秒抽取一帧 + logging.info(f"视频较长,使用增大抽样间隔: {sample_interval}帧") + else: + sample_interval = max(int(fps * FRAME_INTERVAL), 1) # 使用默认间隔 + + logging.info(f"使用抽样间隔: {sample_interval}帧 (约{sample_interval/fps:.1f}秒/帧)") + + # 使用线程池进行并行处理 + with concurrent.futures.ThreadPoolExecutor(max_workers=MAX_WORKERS) as executor: + futures = [] + frames_batch = [] + batch_start_idx = 0 + + try: + # 修改为按间隔抽取帧 + # 读取所有帧,短视频使用更密集采样 + for idx, frame in enumerate(reader): + # 更新进度 + progress.update(1) + + # 只处理符合抽样间隔的帧 + if not is_short_video and idx % sample_interval != 0: + continue + elif is_short_video and idx % sample_interval != 0: + # 短视频也按间隔处理,但间隔更小 + continue + + # 检查是否接近结束 + if idx >= total_frames - last_frames_threshold: + if not simplified_processing: + print("[信息] 进入最后阶段,启用简化处理模式") + simplified_processing = True + # 清理现有资源 + self.frame_cache.clear() + self.feature_cache.clear() + gc.collect() + + current_time = time.time() + if current_time - last_frame_time > last_frame_timeout: + print(f"[警告] 处理最后{last_frames_threshold}帧时卡住,跳过剩余帧") + # 强制处理当前批次 + if frames_batch: + future = executor.submit(self.process_frame_batch, frames_batch, batch_start_idx) + futures.append(future) + break + + # 在最后阶段使用最小批处理大小 + current_batch_size = 1 + last_frame_time = current_time + + curr_time = idx / fps + + # 检查是否为无信息帧(短视频时使用宽松标准) + if not is_short_video and self.is_blank_frame(frame, simplified=True): + continue + elif is_short_video and self.is_blank_frame(frame, threshold=50): # 短视频使用更宽松的阈值 + continue + + frames_batch.append(frame) + + # 当批次达到指定大小时提交处理 + if len(frames_batch) >= current_batch_size: + future = executor.submit(self.process_frame_batch, frames_batch, batch_start_idx) + futures.append(future) + batch_start_idx += len(frames_batch) + frames_batch = [] + + # 及时清理完成的future + self._clean_completed_futures(futures, result_queue) + + # 强制垃圾回收 + if frame_count % 20 == 0: # 更频繁的垃圾回收 + gc.collect() + + # 处理剩余的帧 + if frames_batch: + future = executor.submit(self.process_frame_batch, frames_batch, batch_start_idx) + futures.append(future) + + # 等待所有future完成,但设置更短的超时 + try: + for future in concurrent.futures.as_completed(futures, timeout=15): + try: + batch_results = future.result(timeout=3) # 更短的超时 + for idx, frame in batch_results: + result_queue.put((idx, frame)) + except Exception as e: + print(f"[警告] 处理批次时出错: {str(e)}") + except concurrent.futures.TimeoutError: + print("[警告] 部分批次处理超时,继续处理已完成的结果") + + except Exception as e: + print(f"[警告] 帧处理过程中出错: {str(e)}") + finally: + # 处理队列中的所有结果 + while not result_queue.empty(): + try: + idx, frame = result_queue.get_nowait() + curr_time = idx / fps + + # 使用简化版本的特征比较(短视频降低相似度阈值) + if prev_frame is not None: + try: + similarity_threshold = 0.6 if is_short_video else 0.8 + if not self._is_frame_different(prev_frame, frame, simplified=True, threshold=similarity_threshold): + continue + except Exception as e: + print(f"[警告] 特征比较失败: {str(e)}") + continue + + keyframes.append(Image.fromarray(frame)) + timestamps.append(curr_time) + prev_frame = frame + frame_count += 1 + + # 在最后阶段更频繁地清理资源 + if simplified_processing and frame_count % 5 == 0: + gc.collect() + except queue.Empty: + break + + reader.close() + print(f"[图像] 关键帧提取完成,共{len(keyframes)}帧") + + # 检查是否达到最小关键帧要求 + if len(keyframes) < MIN_KEYFRAMES and total_frames > 0: + logging.info(f"检测到关键帧数量不足({len(keyframes)}<{MIN_KEYFRAMES}),进行强制提取") + # 重新打开视频并直接均匀采样 + try: + reader = imageio.get_reader(video_path) + # 计算均匀采样点 + sample_points = [int(i * total_frames / MIN_KEYFRAMES) for i in range(MIN_KEYFRAMES)] + + # 清空现有关键帧 + keyframes = [] + timestamps = [] + + for i, frame_idx in enumerate(sample_points): + try: + # 跳到指定帧 + frame = reader.get_data(frame_idx) + keyframes.append(Image.fromarray(frame)) + timestamps.append(frame_idx / fps) + logging.info(f"强制提取第{i+1}个关键帧: 帧索引={frame_idx}, 时间={frame_idx/fps:.2f}秒") + except Exception as e: + logging.error(f"强制提取关键帧失败: {str(e)}") + + reader.close() + logging.info(f"强制提取完成,共{len(keyframes)}帧") + except Exception as e: + logging.error(f"强制提取关键帧过程出错: {str(e)}") + + # 优化:限制最大关键帧数量,通过均匀采样减少 + if len(keyframes) > MAX_KEYFRAMES: + logging.info(f"关键帧数量({len(keyframes)})超过限制({MAX_KEYFRAMES}),进行抽样") + + # 计算采样间隔 + sample_rate = len(keyframes) / MAX_KEYFRAMES + sampled_keyframes = [] + sampled_timestamps = [] + + # 均匀采样 + for i in range(MAX_KEYFRAMES): + idx = min(int(i * sample_rate), len(keyframes) - 1) + sampled_keyframes.append(keyframes[idx]) + sampled_timestamps.append(timestamps[idx]) + + keyframes = sampled_keyframes + timestamps = sampled_timestamps + logging.info(f"抽样后关键帧数量: {len(keyframes)}") + + # 清理资源 + self.frame_cache.clear() + self.feature_cache.clear() + gc.collect() + + # 停止超时处理 + self.timeout_handler.stop() + progress.complete(f"提取了{len(keyframes)}个关键帧") + + return keyframes, duration + except Exception as e: + print(f"[错误] 关键帧提取失败: {str(e)}") + self.timeout_handler.stop() + return [], 0.0 + + def _clean_completed_futures(self, futures, result_queue): + """清理已完成的future并存储结果""" + done = [] + for future in futures: + if future.done(): + try: + batch_results = future.result(timeout=1) + for result in batch_results: + result_queue.put(result) + done.append(future) + except Exception as e: + print(f"[警告] 获取future结果时出错: {str(e)}") + + # 从futures列表中移除已完成的 + for future in done: + futures.remove(future) + + # 强制垃圾回收 + if len(done) > 0: + gc.collect() + + def _is_frame_different(self, frame1, frame2, simplified=False, threshold=0.8): + """简化版本的帧差异检测""" + if simplified: + try: + # 使用更简单的比较方法 + gray1 = cv2.cvtColor(frame1, cv2.COLOR_BGR2GRAY) + gray2 = cv2.cvtColor(frame2, cv2.COLOR_BGR2GRAY) + + # 计算平均差异 + diff = cv2.absdiff(gray1, gray2) + mean_diff = np.mean(diff) + + # 如果差异小于阈值,认为帧相同 + return mean_diff > threshold * 10 # 可调整的阈值 + except Exception: + return True + else: + # 完整的特征比较逻辑 + return True # 默认认为不同,具体实现可以根据需要添加 + + def is_blank_frame(self, frame, simplified=False): + """检测是否为无信息帧(支持简化版本)""" + try: + if simplified: + # 简化版本:只检查亮度和方差 + gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) + mean = np.mean(gray) + std = np.std(gray) + return mean < 10 or mean > 245 or std < 20 + else: + # 完整版本的检查逻辑 + return super().is_blank_frame(frame) + except Exception as e: + print(f"[警告] 检查无信息帧时出错: {str(e)}") + return True + + @staticmethod + def transcribe_audio(video_path: str, model_name: str = WHISPER_MODEL) -> list: + """语音识别与时间戳获取(支持中英文混合)""" + try: + # 创建进度跟踪器 + progress = ProgressTracker(100, "语音识别") + progress.update(10, "加载模型") + + # 使用更大的模型提高准确率 + model = whisper.load_model(model_name, device="cpu", download_root=MODEL_DIR) + + progress.update(20, "开始转写") + + # 配置转写参数 + result = model.transcribe( + video_path, + fp16=False, + language="zh", + task="transcribe", + verbose=True, + initial_prompt="这是一段包含中英文的PPT讲解视频,可能包含专业术语。" + ) + + progress.update(60, "处理转写结果") + segments = result.get("segments", []) + + # 后处理:专业术语替换 + for i, seg in enumerate(segments): + text = seg["text"] + for cn, en in PROFESSIONAL_TERMS.items(): + text = text.replace(cn, f"{cn}({en})") + seg["text"] = text + progress.update(30 / len(segments), f"处理第{i + 1}/{len(segments)}个片段") + + progress.complete(f"识别了{len(segments)}个语音片段") + return segments + except Exception as e: + print(f"[错误] 语音识别失败: {str(e)}") + return [] + + +# ---------------------- 业务逻辑模块 ---------------------- +class ContentAligner: + @staticmethod + def generate_page_intervals(timestamps: list, duration: float) -> list: + """生成页面时间段""" + intervals = [] + for i in range(len(timestamps)): + start = timestamps[i] + end = timestamps[i + 1] if i < len(timestamps) - 1 else duration + intervals.append((start, end)) + return intervals + + @staticmethod + @lru_cache(maxsize=CACHE_SIZE) + def calculate_text_similarity(text1: str, text2: str) -> float: + """计算文本相似度(带缓存)""" + # 使用简单的词重叠度计算 + words1 = set(re.findall(r'\w+', text1.lower())) + words2 = set(re.findall(r'\w+', text2.lower())) + if not words1 or not words2: + return 0.0 + intersection = words1.intersection(words2) + union = words1.union(words2) + return len(intersection) / len(union) + + @staticmethod + def _process_segment(seg, seg_start, intervals, all_segments): + """处理单个语音片段(用于并行处理)""" + # 首先尝试时间戳匹配 + for page_idx, (start, end) in enumerate(intervals): + if start <= seg_start < end: + return page_idx, seg + + # 如果时间戳匹配失败,尝试文本相似度匹配 + best_page = None + best_score = 0.0 + + for page_idx, (start, end) in enumerate(intervals): + # 获取该页面的所有文本 + page_text = " ".join([s["text"] for s in all_segments if start <= s["start"] < end]) + similarity = ContentAligner.calculate_text_similarity(seg["text"], page_text) + if similarity > best_score: + best_score = similarity + best_page = page_idx + + if best_page is not None: + return best_page, seg + return None + + @staticmethod + def find_best_match(segments: list, intervals: list) -> dict: + """为每个语音片段找到最佳匹配的页面(并行处理)""" + page_texts = defaultdict(list) + unmatched_segments = [] + + # 创建进度跟踪器 + progress = ProgressTracker(len(segments), "内容对齐") + + # 使用线程池进行并行处理 + with concurrent.futures.ThreadPoolExecutor(max_workers=MAX_WORKERS) as executor: + futures = [] + + for seg in segments: + seg_start = seg["start"] + future = executor.submit(ContentAligner._process_segment, seg, seg_start, intervals, segments) + futures.append(future) + + # 收集结果 + for i, future in enumerate(concurrent.futures.as_completed(futures)): + try: + result = future.result() + if result: + page_idx, seg = result + page_texts[page_idx].append(seg) + else: + unmatched_segments.append(seg) + progress.update(1, f"处理第{i + 1}/{len(segments)}个片段") + except Exception as e: + print(f"[警告] 处理语音片段时出错: {str(e)}") + + # 处理未匹配的片段 + if unmatched_segments: + print(f"[警告] 发现{len(unmatched_segments)}个未匹配的语音片段") + # 将未匹配片段添加到最近的页面 + for seg in unmatched_segments: + closest_page = min(range(len(intervals)), + key=lambda i: abs(seg["start"] - (intervals[i][0] + intervals[i][1]) / 2)) + page_texts[closest_page].append(seg) + + progress.complete(f"对齐了{len(segments)}个语音片段") + return page_texts + + @staticmethod + def align_content(video_path: str, timestamps: list) -> list: + """语音-画面对齐主逻辑(改进版,并行处理)""" + try: + # 创建超时处理器 + timeout_handler = TimeoutHandler() + timeout_handler.start("内容对齐") + + # 获取视频时长 + try: + reader = imageio.get_reader(video_path) + duration = reader.get_meta_data()["duration"] + reader.close() + except: + duration = timestamps[-1] + FRAME_INTERVAL + + # 语音识别 + segments = VideoProcessor.transcribe_audio(video_path) + if not segments: + logging.warning("未识别到语音内容,将生成空文本摘要") + segments = [] + + # 生成页面时间间隔 + intervals = ContentAligner.generate_page_intervals(timestamps, duration) + + # 使用改进的匹配算法(并行处理) + page_texts = ContentAligner.find_best_match(segments, intervals) + + # 生成最终的对齐数据 + aligned_data = [] + for idx in range(len(intervals)): + text = " ".join([seg["text"] for seg in page_texts.get(idx, [])]) + aligned_data.append({ + "page": idx, + "start_time": intervals[idx][0], + "end_time": intervals[idx][1], + "text": text if text else "未识别到相关语音内容" + }) + + # 停止超时处理 + timeout_handler.stop() + + return aligned_data + except Exception as e: + logging.error(f"内容对齐失败: {str(e)}") + logging.error(traceback.format_exc()) + return [] + + +# ---------------------- 摘要生成模块 ---------------------- +class SummaryGenerator: + @staticmethod + def optimize_text(text: str) -> str: + """优化文本内容""" + # 替换专业术语 + for term, abbr in PROFESSIONAL_TERMS.items(): + text = text.replace(term, f'{term} ({abbr})') + + # 优化过渡词 + for word in TRANSITION_WORDS: + text = text.replace(word, f'{word}') + + return text + + @staticmethod + def generate_html(aligned_data: list, keyframes: list, output_dir: str): + """生成HTML格式的报告""" + # 创建临时目录用于存储图片 + temp_img_dir = os.path.join(output_dir, "temp_images") + os.makedirs(temp_img_dir, exist_ok=True) + + # 创建进度跟踪器 + progress = ProgressTracker(len(aligned_data) + 1, "HTML报告生成") + + # 创建超时处理器 + timeout_handler = TimeoutHandler() + timeout_handler.start("HTML报告生成") + + try: + # 检查输出目录权限 + try: + # 尝试在输出目录创建测试文件以验证权限 + test_file = os.path.join(output_dir, "test_write_permission.tmp") + with open(test_file, 'w') as f: + f.write("test") + os.remove(test_file) + logging.info(f"输出目录权限检查通过: {output_dir}") + except Exception as e: + logging.error(f"输出目录权限检查失败: {str(e)},尝试使用当前目录") + # 如果指定的输出目录不可写,则使用当前目录 + output_dir = os.path.abspath(".") + temp_img_dir = os.path.join(output_dir, "temp_images") + os.makedirs(temp_img_dir, exist_ok=True) + logging.info(f"已切换到当前目录作为输出: {output_dir}") + + # 性能优化:减小图片大小,加快处理 + logging.info("优化图片尺寸以提高性能") + optimized_keyframes = [] + for frame in keyframes: + # 限制图片最大尺寸为720p + if frame.width > 1280 or frame.height > 720: + aspect_ratio = frame.width / frame.height + if aspect_ratio > 16/9: # 宽屏 + new_width = 1280 + new_height = int(new_width / aspect_ratio) + else: + new_height = 720 + new_width = int(new_height * aspect_ratio) + frame = frame.resize((new_width, new_height), Image.LANCZOS) + optimized_keyframes.append(frame) + + keyframes = optimized_keyframes + logging.info("图片尺寸优化完成") + + # 处理所有帧 + pages_data = [] + for idx, frame in enumerate(keyframes): + try: + page_data = SummaryGenerator._process_frame(idx, frame, aligned_data, temp_img_dir) + if page_data: + pages_data.append(page_data) + progress.update(1, f"处理第 {idx + 1} 页") + except Exception as e: + logging.error(f"处理帧 {idx} 时出错: {str(e)}") + logging.error(traceback.format_exc()) + continue + + # 检查是否有成功处理的页面 + if not pages_data: + logging.error("没有成功处理任何页面,无法生成HTML报告") + raise RuntimeError("没有成功处理任何页面,无法生成HTML报告") + + # 生成HTML模板 + template = Environment().from_string(""" + + +
+ +处理过程中发生了以下错误:
+{str(e)}+
请查看日志文件以获取更多信息。
+ + + """) + print(f"\n[警告] 正常报告生成失败,已创建应急报告: {fallback_path}\n") + except Exception: + logging.error("创建应急报告也失败了") + return False + + +# ---------------------- 主流程控制 ---------------------- +def main_process(video_path, output_dir=None, progress_callback=None): + try: + logging.info(f"开始处理视频文件: {video_path}") + + # 设置输出目录 + if output_dir is None: + output_dir = OUTPUT_DIR + + # 检查输出目录是否存在,如果不存在则创建 + try: + os.makedirs(output_dir, exist_ok=True) + logging.info(f"使用输出目录: {output_dir}") + + # 检查输出目录权限 + test_file = os.path.join(output_dir, "test_permission.tmp") + with open(test_file, "w") as f: + f.write("test") + os.remove(test_file) + except Exception as e: + logging.error(f"输出目录异常: {str(e)},使用当前目录作为替代") + output_dir = os.path.abspath(".") + os.makedirs(output_dir, exist_ok=True) + logging.info(f"已切换到当前目录: {output_dir}") + + # 进度回调函数 + def update_progress(progress, message=None): + if progress_callback: + try: + progress_callback(progress, message) + except Exception as e: + logging.error(f"进度回调函数执行失败: {str(e)}") + logging.info(f"处理进度: {progress}% - {message if message else ''}") + + # 初始化进度 + update_progress(0, "开始处理视频") + + # 检查视频文件是否存在 + if not os.path.exists(video_path): + error_msg = f"视频文件不存在: {video_path}" + logging.error(error_msg) + update_progress(0, f"错误: {error_msg}") + raise FileNotFoundError(error_msg) + + # 检查文件大小 + file_size = os.path.getsize(video_path) / (1024 * 1024) # 转换为MB + logging.info(f"视频文件大小: {file_size:.2f}MB") + + # 检查文件是否为空 + if file_size == 0: + error_msg = "视频文件为空" + logging.error(error_msg) + update_progress(0, f"错误: {error_msg}") + raise ValueError(error_msg) + + # 检查文件是否可读 + try: + with open(video_path, 'rb') as f: + f.read(1024) # 尝试读取一小块数据 + except Exception as e: + error_msg = f"视频文件无法读取: {str(e)}" + logging.error(error_msg) + update_progress(0, f"错误: {error_msg}") + raise IOError(error_msg) + + # 检查依赖项 + update_progress(5, "检查系统依赖") + if not check_dependencies(): + error_msg = "依赖项检查失败" + logging.error(error_msg) + update_progress(5, f"错误: {error_msg}") + raise RuntimeError(f"{error_msg},请检查日志获取详细信息") + + update_progress(10, "依赖项检查通过") + + # 初始化视频处理器 + processor = VideoProcessor() + + # 提取关键帧 + logging.info("开始提取关键帧...") + update_progress(15, "开始提取关键帧") + try: + keyframes, duration = processor.extract_keyframes(video_path) + if not keyframes: + error_msg = "关键帧提取失败:未能提取到任何关键帧" + logging.error(error_msg) + update_progress(15, f"错误: 未能提取到关键帧") + raise RuntimeError(error_msg) + logging.info(f"成功提取 {len(keyframes)} 个关键帧,视频时长:{duration:.2f}秒") + update_progress(40, f"已提取 {len(keyframes)} 个关键帧") + except Exception as e: + error_msg = f"关键帧提取过程出错: {str(e)}" + logging.error(error_msg) + try: + logging.error(traceback.format_exc()) + except Exception: + logging.error("无法获取详细错误信息,traceback模块不可用") + update_progress(15, f"错误: 关键帧提取失败 - {str(e)}") + raise RuntimeError(error_msg) + + # 转录音频 + logging.info("开始转录音频...") + update_progress(45, "开始转录音频") + try: + segments = VideoProcessor.transcribe_audio(video_path) + if not segments: + logging.warning("音频转录失败:未能识别到任何语音内容") + update_progress(45, "警告: 未识别到语音内容,将生成空文本摘要") + segments = [] + else: + logging.info(f"成功转录 {len(segments)} 个音频片段") + update_progress(65, f"已转录 {len(segments)} 个音频片段") + for i, seg in enumerate(segments[:3], 1): # 只记录前三个片段作为示例 + logging.debug(f"音频片段 {i}: {seg['text'][:50]}...") + except Exception as e: + error_msg = f"音频转录过程出错: {str(e)}" + logging.error(error_msg) + try: + logging.error(traceback.format_exc()) + except Exception: + logging.error("无法获取详细错误信息,traceback模块不可用") + update_progress(45, f"错误: 音频转录失败 - {str(e)}") + raise RuntimeError(error_msg) + + # 计算时间戳 + timestamps = [0] # 添加起始时间戳 + for frame_idx, frame in enumerate(keyframes[1:], 1): + timestamps.append(frame_idx * duration / len(keyframes)) + + # 对齐内容 + logging.info("开始对齐内容...") + update_progress(70, "开始对齐内容") + try: + aligned_data = ContentAligner.align_content(video_path, timestamps) + if not aligned_data: + error_msg = "内容对齐失败:未能生成对齐数据" + logging.error(error_msg) + update_progress(70, "错误: 内容对齐失败") + # 创建一个空的对齐数据,以便能继续生成报告 + aligned_data = [] + for i in range(len(keyframes)): + aligned_data.append({ + "page": i, + "start_time": timestamps[i], + "end_time": timestamps[i+1] if i < len(timestamps)-1 else duration, + "text": "未能识别到相关语音内容" + }) + logging.info(f"已创建{len(aligned_data)}个空内容对齐数据") + update_progress(75, "使用空内容继续处理") + else: + logging.info(f"成功对齐 {len(aligned_data)} 个内容片段") + update_progress(80, f"已对齐 {len(aligned_data)} 个内容片段") + for i, data in enumerate(aligned_data[:3], 1): # 只记录前三个对齐结果作为示例 + logging.debug(f"对齐片段 {i}: {data.get('start_time', 'N/A')}s - {data.get('end_time', 'N/A')}s") + except Exception as e: + error_msg = f"内容对齐过程出错: {str(e)}" + logging.error(error_msg) + try: + logging.error(traceback.format_exc()) + except Exception: + logging.error("无法获取详细错误信息,traceback模块不可用") + update_progress(70, f"错误: 内容对齐失败 - {str(e)}") + + # 创建一个空的对齐数据,以便能继续生成报告 + aligned_data = [] + for i in range(len(keyframes)): + aligned_data.append({ + "page": i, + "start_time": timestamps[i], + "end_time": timestamps[i+1] if i < len(timestamps)-1 else duration, + "text": "未能识别到相关语音内容" + }) + logging.info(f"已创建{len(aligned_data)}个空内容对齐数据") + update_progress(75, "使用空内容继续处理") + + # 生成总结 + logging.info("开始生成总结...") + update_progress(85, "开始生成报告") + try: + if SummaryGenerator.generate_all(aligned_data, keyframes, output_dir): + logging.info(f"总结生成完成,输出目录: {output_dir}") + update_progress(100, "处理完成") + + # 检查HTML文件是否存在 + html_path = os.path.join(output_dir, "summary.html") + if os.path.exists(html_path): + logging.info(f"报告验证成功: {html_path}") + print(f"\n[成功] 报告生成完成,位置: {os.path.abspath(html_path)}\n") + else: + logging.warning(f"报告文件不存在: {html_path}") + print(f"\n[警告] 处理似乎完成但未找到报告文件,请检查日志\n") + else: + error_msg = "报告生成失败" + logging.error(error_msg) + update_progress(85, f"错误: {error_msg}") + raise RuntimeError(error_msg) + except Exception as e: + error_msg = f"总结生成过程出错: {str(e)}" + logging.error(error_msg) + try: + logging.error(traceback.format_exc()) + except Exception: + logging.error("无法获取详细错误信息,traceback模块不可用") + update_progress(85, f"错误: 报告生成失败 - {str(e)}") + + # 尝试创建一个简单的报告 + try: + simple_html = os.path.join(output_dir, "simple_report.html") + with open(simple_html, "w", encoding="utf-8") as f: + f.write(f""" + + + + +完整报告生成失败,这是一个简化版本
+ """) + + # 添加关键帧 + for i, frame in enumerate(keyframes): + # 保存图片 + img_path = os.path.join(output_dir, f"frame_{i}.jpg") + frame.save(img_path) + + # 添加到HTML + f.write(f""" +