上传文件至 4,0

This commit is contained in:
jcy 2025-04-24 15:49:34 +08:00
parent 463a2ead70
commit 022ece1437
2 changed files with 525 additions and 0 deletions

BIN
4,0/summary.pdf Normal file

Binary file not shown.

525
4,0/毕设.py Normal file
View File

@ -0,0 +1,525 @@
import os
import re
import base64
import warnings
import imageio
import whisper
import numpy as np
import pdfkit
from PIL import Image
from skimage.metrics import structural_similarity as ssim
from collections import defaultdict
import subprocess
from jinja2 import Environment
import cv2
from scipy.signal import find_peaks
from skimage.feature import hog
from skimage.color import rgb2gray
# ======================== 全局配置 ========================
warnings.filterwarnings("ignore", message="FP16 is not supported on CPU; using FP32 instead")
VIDEO_PATH = "D:/python项目文件/1/input.mp4" # 输入视频路径
MODEL_DIR = "D:/whisper_models" # Whisper模型目录
FFMPEG_BIN = r"D:\Program Files\ffmpeg\bin" # FFmpeg安装路径
WKHTMLTOPDF_PATH = r"D:\wkhtmltopdf\bin\wkhtmltopdf.exe" # wkhtmltopdf路径
SSIM_THRESHOLD = 0.85 # 关键帧去重阈值
FRAME_INTERVAL = 2 # 抽帧间隔(秒)
OUTPUT_DIR = "D:\桌面文件\python\output" # 输出目录
TRANSITION_WORDS = ["接下来", "下一页", "如图"] # 过渡词过滤列
HOG_THRESHOLD = 0.7 # HOG特征相似度阈值
COLOR_THRESHOLD = 0.8 # 颜色直方图相似度阈值
WHISPER_MODEL = "base" # Whisper模型大小
PROFESSIONAL_TERMS = {
"人工智能": "AI",
"机器学习": "ML",
"深度学习": "DL",
"神经网络": "NN",
"卷积神经网络": "CNN",
"循环神经网络": "RNN",
"自然语言处理": "NLP",
"计算机视觉": "CV",
"大数据": "Big Data",
"云计算": "Cloud Computing"
} # 专业术语词典
# ========================================================
# ---------------------- 核心功能模块 ----------------------
class VideoProcessor:
def __init__(self):
os.environ["PATH"] = FFMPEG_BIN + os.pathsep + os.environ["PATH"]
@staticmethod
def check_ffmpeg():
"""验证FFmpeg可用性"""
try:
subprocess.run(["ffmpeg", "-version"], check=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
print("[系统] FFmpeg验证成功")
return True
except Exception as e:
print(f"[错误] FFmpeg验证失败: {str(e)}")
return False
@staticmethod
def calculate_color_histogram(frame):
"""计算颜色直方图特征"""
hist = cv2.calcHist([frame], [0, 1, 2], None, [8, 8, 8], [0, 256, 0, 256, 0, 256])
cv2.normalize(hist, hist)
return hist.flatten()
@staticmethod
def calculate_hog_features(frame):
"""计算HOG特征"""
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
features = hog(gray, orientations=8, pixels_per_cell=(16, 16),
cells_per_block=(1, 1), visualize=False)
return features
@staticmethod
def is_ppt_transition(frame1, frame2):
"""检测PPT页面切换"""
# 转换为灰度图
gray1 = cv2.cvtColor(frame1, cv2.COLOR_BGR2GRAY)
gray2 = cv2.cvtColor(frame2, cv2.COLOR_BGR2GRAY)
# 计算边缘
edges1 = cv2.Canny(gray1, 100, 200)
edges2 = cv2.Canny(gray2, 100, 200)
# 计算边缘差异
diff = cv2.absdiff(edges1, edges2)
return np.mean(diff) > 50 # 阈值可调整
@staticmethod
def extract_keyframes(video_path: str) -> tuple:
"""提取去重关键帧及其时间戳(多特征融合)"""
try:
reader = imageio.get_reader(video_path)
fps = reader.get_meta_data()["fps"]
keyframes = []
timestamps = []
prev_frame = None
prev_features = None
for idx, frame in enumerate(reader):
curr_time = idx / fps
if curr_time - (timestamps[-1] if timestamps else 0) < FRAME_INTERVAL:
continue
# 多特征相似度计算
if prev_frame is not None:
# 1. SSIM相似度
gray_prev = cv2.cvtColor(prev_frame, cv2.COLOR_BGR2GRAY)
gray_curr = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
ssim_score = ssim(gray_prev, gray_curr)
# 2. 颜色直方图相似度
hist_prev = VideoProcessor.calculate_color_histogram(prev_frame)
hist_curr = VideoProcessor.calculate_color_histogram(frame)
color_sim = cv2.compareHist(hist_prev, hist_curr, cv2.HISTCMP_CORREL)
# 3. HOG特征相似度
hog_prev = VideoProcessor.calculate_hog_features(prev_frame)
hog_curr = VideoProcessor.calculate_hog_features(frame)
hog_sim = np.dot(hog_prev, hog_curr) / (np.linalg.norm(hog_prev) * np.linalg.norm(hog_curr))
# 4. PPT页面切换检测
is_transition = VideoProcessor.is_ppt_transition(prev_frame, frame)
# 综合判断
if (ssim_score > SSIM_THRESHOLD and
color_sim > COLOR_THRESHOLD and
hog_sim > HOG_THRESHOLD and
not is_transition):
continue
keyframes.append(Image.fromarray(frame))
timestamps.append(curr_time)
prev_frame = frame
reader.close()
print(f"[图像] 关键帧提取完成,共{len(keyframes)}")
return keyframes, timestamps
except Exception as e:
print(f"[错误] 关键帧提取失败: {str(e)}")
return [], []
@staticmethod
def transcribe_audio(video_path: str, model_name: str = WHISPER_MODEL) -> list:
"""语音识别与时间戳获取(支持中英文混合)"""
try:
# 使用更大的模型提高准确率
model = whisper.load_model(model_name, device="cpu", download_root=MODEL_DIR)
# 配置转写参数
result = model.transcribe(
video_path,
fp16=False,
language="zh",
task="transcribe",
verbose=True,
initial_prompt="这是一段包含中英文的PPT讲解视频可能包含专业术语。"
)
segments = result.get("segments", [])
# 后处理:专业术语替换
for seg in segments:
text = seg["text"]
for cn, en in PROFESSIONAL_TERMS.items():
text = text.replace(cn, f"{cn}({en})")
seg["text"] = text
return segments
except Exception as e:
print(f"[错误] 语音识别失败: {str(e)}")
return []
# ---------------------- 业务逻辑模块 ----------------------
class ContentAligner:
@staticmethod
def generate_page_intervals(timestamps: list, duration: float) -> list:
"""生成页面时间段"""
intervals = []
for i in range(len(timestamps)):
start = timestamps[i]
end = timestamps[i + 1] if i < len(timestamps) - 1 else duration
intervals.append((start, end))
return intervals
@staticmethod
def calculate_text_similarity(text1: str, text2: str) -> float:
"""计算文本相似度"""
# 使用简单的词重叠度计算
words1 = set(re.findall(r'\w+', text1.lower()))
words2 = set(re.findall(r'\w+', text2.lower()))
if not words1 or not words2:
return 0.0
intersection = words1.intersection(words2)
union = words1.union(words2)
return len(intersection) / len(union)
@staticmethod
def find_best_match(segments: list, intervals: list) -> dict:
"""为每个语音片段找到最佳匹配的页面"""
page_texts = defaultdict(list)
unmatched_segments = []
for seg in segments:
seg_start = seg["start"]
best_match = None
best_score = 0.0
# 1. 首先尝试时间戳匹配
for page_idx, (start, end) in enumerate(intervals):
if start <= seg_start < end:
best_match = page_idx
break
# 2. 如果时间戳匹配失败,尝试文本相似度匹配
if best_match is None:
for page_idx, (start, end) in enumerate(intervals):
# 获取该页面的所有文本
page_text = " ".join([s["text"] for s in segments if start <= s["start"] < end])
similarity = ContentAligner.calculate_text_similarity(seg["text"], page_text)
if similarity > best_score:
best_score = similarity
best_match = page_idx
# 3. 如果找到匹配,添加到对应页面
if best_match is not None:
page_texts[best_match].append(seg)
else:
unmatched_segments.append(seg)
# 4. 处理未匹配的片段
if unmatched_segments:
print(f"[警告] 发现{len(unmatched_segments)}个未匹配的语音片段")
# 将未匹配片段添加到最近的页面
for seg in unmatched_segments:
closest_page = min(range(len(intervals)),
key=lambda i: abs(seg["start"] - (intervals[i][0] + intervals[i][1]) / 2))
page_texts[closest_page].append(seg)
return page_texts
@staticmethod
def align_content(video_path: str, timestamps: list) -> list:
"""语音-画面对齐主逻辑(改进版)"""
try:
reader = imageio.get_reader(video_path)
duration = reader.get_meta_data()["duration"]
reader.close()
except:
duration = timestamps[-1] + FRAME_INTERVAL
segments = VideoProcessor.transcribe_audio(video_path)
intervals = ContentAligner.generate_page_intervals(timestamps, duration)
# 使用改进的匹配算法
page_texts = ContentAligner.find_best_match(segments, intervals)
# 生成最终的对齐数据
aligned_data = []
for idx in range(len(intervals)):
text = " ".join([seg["text"] for seg in page_texts.get(idx, [])])
aligned_data.append({
"page": idx,
"start_time": intervals[idx][0],
"end_time": intervals[idx][1],
"text": text
})
return aligned_data
# ---------------------- 摘要生成模块 ----------------------
class SummaryGenerator:
@staticmethod
def optimize_text(text: str) -> str:
"""文本浓缩优化"""
sentences = re.split(r'[。!?]', text)
filtered = []
seen = set()
for sent in sentences:
sent = sent.strip()
if (len(sent) >= 10
and not any(word in sent for word in TRANSITION_WORDS)
and sent not in seen):
filtered.append(sent)
seen.add(sent)
return ''.join(filtered) + '' if filtered else ""
@staticmethod
def generate_html(aligned_data: list, keyframes: list, output_dir: str):
"""生成HTML报告"""
pages_data = []
temp_img_dir = os.path.join(output_dir, "_temp_images")
os.makedirs(temp_img_dir, exist_ok=True)
try:
for idx, frame in enumerate(keyframes):
img_path = os.path.join(temp_img_dir, f"page_{idx}.jpg")
frame.save(img_path)
with open(img_path, "rb") as f:
img_data = base64.b64encode(f.read()).decode("utf-8")
pages_data.append({
"num": idx + 1,
"time": f"{aligned_data[idx]['start_time']:.1f}s - {aligned_data[idx]['end_time']:.1f}s",
"image": f"data:image/jpeg;base64,{img_data}",
"text": SummaryGenerator.optimize_text(aligned_data[idx]["text"])
})
env = Environment()
template = env.from_string("""
<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<title>PPT视频摘要报告</title>
<style>
.page { margin: 20px; padding: 15px; border: 1px solid #eee; }
img { max-width: 800px; height: auto; }
.timestamp { color: #666; font-size: 0.9em; }
.content { margin-top: 10px; }
</style>
</head>
<body>
<h1>PPT视频结构化摘要</h1>
{% for page in pages %}
<div class="page">
<h2>页面 {{ page.num }}</h2>
<div class="timestamp">{{ page.time }}</div>
<img src="{{ page.image }}" alt="页面截图">
<div class="content">{{ page.text }}</div>
</div>
{% endfor %}
</body>
</html>
""")
output_path = os.path.join(output_dir, "summary.html")
with open(output_path, "w", encoding="utf-8") as f:
f.write(template.render(pages=pages_data))
print(f"[输出] HTML报告已生成: {output_path}")
finally:
for f in os.listdir(temp_img_dir):
os.remove(os.path.join(temp_img_dir, f))
os.rmdir(temp_img_dir)
@staticmethod
def generate_pdf(aligned_data: list, keyframes: list, output_dir: str):
"""生成PDF报告优化版"""
temp_html = os.path.join(output_dir, "_temp_pdf.html")
temp_img_dir = os.path.join(output_dir, "_temp_pdf_images")
os.makedirs(temp_img_dir, exist_ok=True)
try:
# 使用绝对路径
abs_temp_img_dir = os.path.abspath(temp_img_dir)
html_content = """
<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<style>
@page {
margin: 20mm;
size: A4;
}
body {
font-family: "Microsoft YaHei", "SimSun", sans-serif;
line-height: 1.6;
color: #333;
}
.page {
page-break-inside: avoid;
margin-bottom: 30px;
padding: 20px;
border: 1px solid #eee;
border-radius: 5px;
}
.page-number {
text-align: center;
font-size: 24pt;
font-weight: bold;
margin-bottom: 20px;
color: #2c3e50;
}
.timestamp {
color: #666;
font-size: 12pt;
margin-bottom: 15px;
}
.image-container {
text-align: center;
margin: 20px 0;
}
img {
max-width: 90% !important;
height: auto;
display: block;
margin: 0 auto;
box-shadow: 0 2px 5px rgba(0,0,0,0.1);
}
.content {
font-size: 14pt;
line-height: 1.8;
margin-top: 20px;
padding: 15px;
background: #f9f9f9;
border-radius: 5px;
}
.professional-term {
color: #2980b9;
font-weight: bold;
}
</style>
</head>
<body>
<h1 style="text-align: center; color: #2c3e50; margin-bottom: 40px;">PPT视频结构化摘要</h1>
{% for page in pages %}
<div class="page">
<div class="page-number"> {{ page.num }} </div>
<div class="timestamp">时间区间{{ page.time }}</div>
<div class="image-container">
<img src="{{ page.image_path }}" alt="页面截图">
</div>
<div class="content">{{ page.text }}</div>
</div>
{% endfor %}
</body>
</html>
"""
pages_data = []
for idx, frame in enumerate(keyframes):
img_filename = f"page_{idx}.jpg"
img_path = os.path.join(abs_temp_img_dir, img_filename)
frame.save(img_path)
pages_data.append({
"num": idx + 1,
"time": f"{aligned_data[idx]['start_time']:.1f}s - {aligned_data[idx]['end_time']:.1f}s",
"image_path": img_path,
"text": SummaryGenerator.optimize_text(aligned_data[idx]["text"])
})
env = Environment()
template = env.from_string(html_content)
with open(temp_html, "w", encoding="utf-8") as f:
f.write(template.render(pages=pages_data))
# PDF生成选项
options = {
"enable-local-file-access": "",
"encoding": "UTF-8",
"margin-top": "20mm",
"margin-bottom": "20mm",
"margin-left": "20mm",
"margin-right": "20mm",
"no-stop-slow-scripts": "",
"quiet": "",
"dpi": "300",
"image-quality": "100",
"enable-smart-shrinking": "",
"print-media-type": ""
}
config = pdfkit.configuration(wkhtmltopdf=WKHTMLTOPDF_PATH)
pdf_path = os.path.join(output_dir, "summary.pdf")
pdfkit.from_file(
temp_html,
pdf_path,
configuration=config,
options=options
)
print(f"[输出] PDF报告已生成: {pdf_path}")
finally:
# 清理临时文件
if os.path.exists(temp_html):
os.remove(temp_html)
if os.path.exists(temp_img_dir):
for f in os.listdir(temp_img_dir):
os.remove(os.path.join(temp_img_dir, f))
os.rmdir(temp_img_dir)
@classmethod
def generate_all(cls, aligned_data: list, keyframes: list, output_dir: str):
"""生成所有格式报告"""
cls.generate_html(aligned_data, keyframes, output_dir)
cls.generate_pdf(aligned_data, keyframes, output_dir)
# ---------------------- 主流程控制 ----------------------
def main_process():
# 环境检查
processor = VideoProcessor()
if not processor.check_ffmpeg():
return
if not os.path.exists(VIDEO_PATH):
print(f"[错误] 视频文件不存在: {VIDEO_PATH}")
return
# 关键帧提取
keyframes, timestamps = processor.extract_keyframes(VIDEO_PATH)
if not keyframes:
print("[错误] 未提取到关键帧")
return
# 内容对齐
aligned_data = ContentAligner.align_content(VIDEO_PATH, timestamps)
if not aligned_data:
print("[警告] 未识别到有效语音内容")
# 生成摘要
os.makedirs(OUTPUT_DIR, exist_ok=True)
SummaryGenerator.generate_all(aligned_data, keyframes, OUTPUT_DIR)
if __name__ == "__main__":
main_process()