1090 lines
44 KiB
Python
1090 lines
44 KiB
Python
|
import os
|
|||
|
import re
|
|||
|
import base64
|
|||
|
import warnings
|
|||
|
import imageio
|
|||
|
import whisper
|
|||
|
import numpy as np
|
|||
|
import pdfkit
|
|||
|
from PIL import Image
|
|||
|
from skimage.metrics import structural_similarity as ssim
|
|||
|
from collections import defaultdict
|
|||
|
import subprocess
|
|||
|
from jinja2 import Environment
|
|||
|
import cv2
|
|||
|
from scipy.signal import find_peaks
|
|||
|
from skimage.feature import hog
|
|||
|
from skimage.color import rgb2gray
|
|||
|
import concurrent.futures
|
|||
|
import threading
|
|||
|
import queue
|
|||
|
import time
|
|||
|
import gc
|
|||
|
from functools import lru_cache
|
|||
|
import multiprocessing
|
|||
|
import signal
|
|||
|
import sys
|
|||
|
|
|||
|
# ======================== 全局配置 ========================
|
|||
|
warnings.filterwarnings("ignore", message="FP16 is not supported on CPU; using FP32 instead")
|
|||
|
VIDEO_PATH = "D:/python项目文件/1/input.mp4" # 输入视频路径
|
|||
|
MODEL_DIR = "D:/whisper_models" # Whisper模型目录
|
|||
|
FFMPEG_BIN = r"D:\Program Files\ffmpeg\bin" # FFmpeg安装路径
|
|||
|
WKHTMLTOPDF_PATH = r"D:\wkhtmltopdf\bin\wkhtmltopdf.exe" # wkhtmltopdf路径
|
|||
|
SSIM_THRESHOLD = 0.85 # 关键帧去重阈值
|
|||
|
FRAME_INTERVAL = 2 # 抽帧间隔(秒)
|
|||
|
OUTPUT_DIR = "D:\桌面文件\python\output1" # 输出目录
|
|||
|
TRANSITION_WORDS = ["接下来", "下一页", "如图"] # 过渡词过滤列
|
|||
|
HOG_THRESHOLD = 0.7 # HOG特征相似度阈值
|
|||
|
COLOR_THRESHOLD = 0.8 # 颜色直方图相似度阈值
|
|||
|
WHISPER_MODEL = "base" # Whisper模型大小
|
|||
|
PROFESSIONAL_TERMS = {
|
|||
|
"人工智能": "AI",
|
|||
|
"机器学习": "ML",
|
|||
|
"深度学习": "DL",
|
|||
|
"神经网络": "NN",
|
|||
|
"卷积神经网络": "CNN",
|
|||
|
"循环神经网络": "RNN",
|
|||
|
"自然语言处理": "NLP",
|
|||
|
"计算机视觉": "CV",
|
|||
|
"大数据": "Big Data",
|
|||
|
"云计算": "Cloud Computing"
|
|||
|
} # 专业术语词典
|
|||
|
|
|||
|
# 性能优化配置
|
|||
|
MAX_WORKERS = max(1, multiprocessing.cpu_count() - 1) # 并行处理的工作线程数
|
|||
|
BATCH_SIZE = 10 # 批处理大小
|
|||
|
CACHE_SIZE = 100 # 缓存大小
|
|||
|
MEMORY_LIMIT = 0.8 # 内存使用限制(占总内存的比例)
|
|||
|
TIMEOUT_SECONDS = 300 # 操作超时时间(秒)
|
|||
|
PROGRESS_UPDATE_INTERVAL = 1 # 进度更新间隔(秒)
|
|||
|
|
|||
|
|
|||
|
# ========================================================
|
|||
|
|
|||
|
# 进度跟踪类
|
|||
|
class ProgressTracker:
|
|||
|
def __init__(self, total_steps, description="处理中"):
|
|||
|
self.total_steps = total_steps
|
|||
|
self.current_step = 0
|
|||
|
self.description = description
|
|||
|
self.start_time = time.time()
|
|||
|
self.last_update_time = self.start_time
|
|||
|
self._lock = threading.Lock()
|
|||
|
|
|||
|
def update(self, step=1, message=None):
|
|||
|
with self._lock:
|
|||
|
self.current_step += step
|
|||
|
current_time = time.time()
|
|||
|
|
|||
|
# 控制更新频率
|
|||
|
if current_time - self.last_update_time >= PROGRESS_UPDATE_INTERVAL:
|
|||
|
elapsed = current_time - self.start_time
|
|||
|
progress = (self.current_step / self.total_steps) * 100
|
|||
|
|
|||
|
if message:
|
|||
|
print(
|
|||
|
f"[进度] {self.description}: {progress:.1f}% ({self.current_step}/{self.total_steps}) - {message}")
|
|||
|
else:
|
|||
|
print(f"[进度] {self.description}: {progress:.1f}% ({self.current_step}/{self.total_steps})")
|
|||
|
|
|||
|
self.last_update_time = current_time
|
|||
|
|
|||
|
def complete(self, message="完成"):
|
|||
|
with self._lock:
|
|||
|
elapsed = time.time() - self.start_time
|
|||
|
print(f"[完成] {self.description}: 100% - {message} (耗时: {elapsed:.1f}秒)")
|
|||
|
|
|||
|
|
|||
|
# 超时处理类
|
|||
|
class TimeoutHandler:
|
|||
|
def __init__(self, timeout_seconds=TIMEOUT_SECONDS):
|
|||
|
self.timeout_seconds = timeout_seconds
|
|||
|
self.timer = None
|
|||
|
self._lock = threading.Lock()
|
|||
|
|
|||
|
def start(self, operation_name):
|
|||
|
with self._lock:
|
|||
|
if self.timer:
|
|||
|
self.timer.cancel()
|
|||
|
self.timer = threading.Timer(self.timeout_seconds, self._timeout_callback, args=[operation_name])
|
|||
|
self.timer.start()
|
|||
|
print(f"[信息] 开始{operation_name},超时时间: {self.timeout_seconds}秒")
|
|||
|
|
|||
|
def stop(self):
|
|||
|
with self._lock:
|
|||
|
if self.timer:
|
|||
|
self.timer.cancel()
|
|||
|
self.timer = None
|
|||
|
|
|||
|
def _timeout_callback(self, operation_name):
|
|||
|
print(f"[警告] {operation_name}操作超时,正在尝试恢复...")
|
|||
|
# 这里可以添加恢复逻辑
|
|||
|
|
|||
|
|
|||
|
# ---------------------- 核心功能模块 ----------------------
|
|||
|
class VideoProcessor:
|
|||
|
def __init__(self):
|
|||
|
os.environ["PATH"] = FFMPEG_BIN + os.pathsep + os.environ["PATH"]
|
|||
|
self.frame_cache = {}
|
|||
|
self.feature_cache = {}
|
|||
|
self._lock = threading.Lock()
|
|||
|
self.timeout_handler = TimeoutHandler()
|
|||
|
|
|||
|
@staticmethod
|
|||
|
def check_ffmpeg():
|
|||
|
"""验证FFmpeg可用性"""
|
|||
|
try:
|
|||
|
subprocess.run(["ffmpeg", "-version"], check=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
|
|||
|
print("[系统] FFmpeg验证成功")
|
|||
|
return True
|
|||
|
except Exception as e:
|
|||
|
print(f"[错误] FFmpeg验证失败: {str(e)}")
|
|||
|
return False
|
|||
|
|
|||
|
@lru_cache(maxsize=CACHE_SIZE)
|
|||
|
def calculate_color_histogram(self, frame_key):
|
|||
|
"""计算颜色直方图特征(带缓存)"""
|
|||
|
frame = self.frame_cache.get(frame_key)
|
|||
|
if frame is None:
|
|||
|
return None
|
|||
|
hist = cv2.calcHist([frame], [0, 1, 2], None, [8, 8, 8], [0, 256, 0, 256, 0, 256])
|
|||
|
cv2.normalize(hist, hist)
|
|||
|
return hist.flatten()
|
|||
|
|
|||
|
@lru_cache(maxsize=CACHE_SIZE)
|
|||
|
def calculate_hog_features(self, frame_key):
|
|||
|
"""计算HOG特征(带缓存)"""
|
|||
|
frame = self.frame_cache.get(frame_key)
|
|||
|
if frame is None:
|
|||
|
return None
|
|||
|
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
|
|||
|
features = hog(gray, orientations=8, pixels_per_cell=(16, 16),
|
|||
|
cells_per_block=(1, 1), visualize=False)
|
|||
|
return features
|
|||
|
|
|||
|
@staticmethod
|
|||
|
def is_ppt_transition(frame1, frame2):
|
|||
|
"""检测PPT页面切换"""
|
|||
|
# 转换为灰度图
|
|||
|
gray1 = cv2.cvtColor(frame1, cv2.COLOR_BGR2GRAY)
|
|||
|
gray2 = cv2.cvtColor(frame2, cv2.COLOR_BGR2GRAY)
|
|||
|
|
|||
|
# 计算边缘
|
|||
|
edges1 = cv2.Canny(gray1, 100, 200)
|
|||
|
edges2 = cv2.Canny(gray2, 100, 200)
|
|||
|
|
|||
|
# 计算边缘差异
|
|||
|
diff = cv2.absdiff(edges1, edges2)
|
|||
|
return np.mean(diff) > 50 # 阈值可调整
|
|||
|
|
|||
|
@staticmethod
|
|||
|
def is_blank_frame(frame, threshold=30):
|
|||
|
"""检测是否为无信息帧(纯黑屏或纯白屏)"""
|
|||
|
try:
|
|||
|
# 转换为灰度图
|
|||
|
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
|
|||
|
|
|||
|
# 计算图像统计特征
|
|||
|
mean = np.mean(gray)
|
|||
|
std_dev = np.std(gray)
|
|||
|
|
|||
|
# 检查是否为纯黑或纯白
|
|||
|
is_black = mean < 10 and std_dev < 5
|
|||
|
is_white = mean > 245 and std_dev < 5
|
|||
|
|
|||
|
# 检查是否有足够的细节
|
|||
|
has_detail = std_dev > threshold
|
|||
|
|
|||
|
return is_black or is_white or not has_detail
|
|||
|
except Exception as e:
|
|||
|
print(f"[警告] 检查无信息帧时出错: {str(e)}")
|
|||
|
return True
|
|||
|
|
|||
|
def process_frame_batch(self, frames_batch, start_idx):
|
|||
|
"""处理一批帧"""
|
|||
|
results = []
|
|||
|
for i, frame in enumerate(frames_batch):
|
|||
|
idx = start_idx + i
|
|||
|
frame_key = f"frame_{idx}"
|
|||
|
self.frame_cache[frame_key] = frame
|
|||
|
results.append((idx, frame))
|
|||
|
return results
|
|||
|
|
|||
|
def extract_keyframes(self, video_path: str) -> tuple:
|
|||
|
"""提取去重关键帧及其时间戳(多特征融合,并行处理)"""
|
|||
|
try:
|
|||
|
self.timeout_handler.start("关键帧提取")
|
|||
|
reader = imageio.get_reader(video_path)
|
|||
|
fps = reader.get_meta_data()["fps"]
|
|||
|
total_frames = reader.count_frames()
|
|||
|
print(f"[信息] 视频总帧数: {total_frames}")
|
|||
|
|
|||
|
keyframes = []
|
|||
|
timestamps = []
|
|||
|
prev_frame = None
|
|||
|
frame_count = 0
|
|||
|
|
|||
|
# 创建进度跟踪器
|
|||
|
progress = ProgressTracker(total_frames, "关键帧提取")
|
|||
|
|
|||
|
# 设置最后处理帧的阈值和超时
|
|||
|
last_frames_threshold = 30 # 增加到30帧
|
|||
|
last_frame_time = time.time()
|
|||
|
last_frame_timeout = 10 # 降低到10秒超时
|
|||
|
|
|||
|
# 批处理大小动态调整
|
|||
|
current_batch_size = BATCH_SIZE
|
|||
|
|
|||
|
# 使用队列存储结果
|
|||
|
result_queue = queue.Queue()
|
|||
|
|
|||
|
# 最后阶段的简化处理标志
|
|||
|
simplified_processing = False
|
|||
|
|
|||
|
# 使用线程池进行并行处理
|
|||
|
with concurrent.futures.ThreadPoolExecutor(max_workers=MAX_WORKERS) as executor:
|
|||
|
futures = []
|
|||
|
frames_batch = []
|
|||
|
batch_start_idx = 0
|
|||
|
|
|||
|
try:
|
|||
|
for idx, frame in enumerate(reader):
|
|||
|
# 更新进度
|
|||
|
progress.update(1)
|
|||
|
|
|||
|
# 检查是否接近结束
|
|||
|
if idx >= total_frames - last_frames_threshold:
|
|||
|
if not simplified_processing:
|
|||
|
print("[信息] 进入最后阶段,启用简化处理模式")
|
|||
|
simplified_processing = True
|
|||
|
# 清理现有资源
|
|||
|
self.frame_cache.clear()
|
|||
|
self.feature_cache.clear()
|
|||
|
gc.collect()
|
|||
|
|
|||
|
current_time = time.time()
|
|||
|
if current_time - last_frame_time > last_frame_timeout:
|
|||
|
print(f"[警告] 处理最后{last_frames_threshold}帧时卡住,跳过剩余帧")
|
|||
|
# 强制处理当前批次
|
|||
|
if frames_batch:
|
|||
|
future = executor.submit(self.process_frame_batch, frames_batch, batch_start_idx)
|
|||
|
futures.append(future)
|
|||
|
break
|
|||
|
|
|||
|
# 在最后阶段使用最小批处理大小
|
|||
|
current_batch_size = 1
|
|||
|
last_frame_time = current_time
|
|||
|
|
|||
|
curr_time = idx / fps
|
|||
|
if curr_time - (timestamps[-1] if timestamps else 0) < FRAME_INTERVAL:
|
|||
|
continue
|
|||
|
|
|||
|
# 检查是否为无信息帧(使用简化版本的检查)
|
|||
|
if self.is_blank_frame(frame, simplified=True):
|
|||
|
continue
|
|||
|
|
|||
|
frames_batch.append(frame)
|
|||
|
|
|||
|
# 当批次达到指定大小时提交处理
|
|||
|
if len(frames_batch) >= current_batch_size:
|
|||
|
future = executor.submit(self.process_frame_batch, frames_batch, batch_start_idx)
|
|||
|
futures.append(future)
|
|||
|
batch_start_idx += len(frames_batch)
|
|||
|
frames_batch = []
|
|||
|
|
|||
|
# 及时清理完成的future
|
|||
|
self._clean_completed_futures(futures, result_queue)
|
|||
|
|
|||
|
# 强制垃圾回收
|
|||
|
if frame_count % 20 == 0: # 更频繁的垃圾回收
|
|||
|
gc.collect()
|
|||
|
|
|||
|
# 处理剩余的帧
|
|||
|
if frames_batch:
|
|||
|
future = executor.submit(self.process_frame_batch, frames_batch, batch_start_idx)
|
|||
|
futures.append(future)
|
|||
|
|
|||
|
# 等待所有future完成,但设置更短的超时
|
|||
|
try:
|
|||
|
for future in concurrent.futures.as_completed(futures, timeout=15):
|
|||
|
try:
|
|||
|
batch_results = future.result(timeout=3) # 更短的超时
|
|||
|
for idx, frame in batch_results:
|
|||
|
result_queue.put((idx, frame))
|
|||
|
except Exception as e:
|
|||
|
print(f"[警告] 处理批次时出错: {str(e)}")
|
|||
|
except concurrent.futures.TimeoutError:
|
|||
|
print("[警告] 部分批次处理超时,继续处理已完成的结果")
|
|||
|
|
|||
|
except Exception as e:
|
|||
|
print(f"[警告] 帧处理过程中出错: {str(e)}")
|
|||
|
finally:
|
|||
|
# 处理队列中的所有结果
|
|||
|
while not result_queue.empty():
|
|||
|
try:
|
|||
|
idx, frame = result_queue.get_nowait()
|
|||
|
curr_time = idx / fps
|
|||
|
|
|||
|
# 使用简化版本的特征比较
|
|||
|
if prev_frame is not None:
|
|||
|
try:
|
|||
|
if not self._is_frame_different(prev_frame, frame, simplified=True):
|
|||
|
continue
|
|||
|
except Exception as e:
|
|||
|
print(f"[警告] 特征比较失败: {str(e)}")
|
|||
|
continue
|
|||
|
|
|||
|
keyframes.append(Image.fromarray(frame))
|
|||
|
timestamps.append(curr_time)
|
|||
|
prev_frame = frame
|
|||
|
frame_count += 1
|
|||
|
|
|||
|
# 在最后阶段更频繁地清理资源
|
|||
|
if simplified_processing and frame_count % 5 == 0:
|
|||
|
gc.collect()
|
|||
|
except queue.Empty:
|
|||
|
break
|
|||
|
|
|||
|
reader.close()
|
|||
|
print(f"[图像] 关键帧提取完成,共{len(keyframes)}帧")
|
|||
|
|
|||
|
# 清理资源
|
|||
|
self.frame_cache.clear()
|
|||
|
self.feature_cache.clear()
|
|||
|
gc.collect()
|
|||
|
|
|||
|
# 停止超时处理
|
|||
|
self.timeout_handler.stop()
|
|||
|
progress.complete(f"提取了{len(keyframes)}个关键帧")
|
|||
|
|
|||
|
return keyframes, timestamps
|
|||
|
except Exception as e:
|
|||
|
print(f"[错误] 关键帧提取失败: {str(e)}")
|
|||
|
self.timeout_handler.stop()
|
|||
|
return [], []
|
|||
|
|
|||
|
def _clean_completed_futures(self, futures, result_queue):
|
|||
|
"""清理已完成的future并存储结果"""
|
|||
|
done = []
|
|||
|
for future in futures:
|
|||
|
if future.done():
|
|||
|
try:
|
|||
|
batch_results = future.result(timeout=1)
|
|||
|
for result in batch_results:
|
|||
|
result_queue.put(result)
|
|||
|
done.append(future)
|
|||
|
except Exception as e:
|
|||
|
print(f"[警告] 获取future结果时出错: {str(e)}")
|
|||
|
|
|||
|
# 从futures列表中移除已完成的
|
|||
|
for future in done:
|
|||
|
futures.remove(future)
|
|||
|
|
|||
|
# 强制垃圾回收
|
|||
|
if len(done) > 0:
|
|||
|
gc.collect()
|
|||
|
|
|||
|
def _is_frame_different(self, frame1, frame2, simplified=False):
|
|||
|
"""简化版本的帧差异检测"""
|
|||
|
if simplified:
|
|||
|
try:
|
|||
|
# 使用更简单的比较方法
|
|||
|
gray1 = cv2.cvtColor(frame1, cv2.COLOR_BGR2GRAY)
|
|||
|
gray2 = cv2.cvtColor(frame2, cv2.COLOR_BGR2GRAY)
|
|||
|
|
|||
|
# 计算平均差异
|
|||
|
diff = cv2.absdiff(gray1, gray2)
|
|||
|
mean_diff = np.mean(diff)
|
|||
|
|
|||
|
# 如果差异小于阈值,认为帧相同
|
|||
|
return mean_diff > 10 # 可调整的阈值
|
|||
|
except Exception:
|
|||
|
return True
|
|||
|
else:
|
|||
|
# 完整的特征比较逻辑
|
|||
|
return True # 默认认为不同,具体实现可以根据需要添加
|
|||
|
|
|||
|
def is_blank_frame(self, frame, simplified=False):
|
|||
|
"""检测是否为无信息帧(支持简化版本)"""
|
|||
|
try:
|
|||
|
if simplified:
|
|||
|
# 简化版本:只检查亮度和方差
|
|||
|
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
|
|||
|
mean = np.mean(gray)
|
|||
|
std = np.std(gray)
|
|||
|
return mean < 10 or mean > 245 or std < 20
|
|||
|
else:
|
|||
|
# 完整版本的检查逻辑
|
|||
|
return super().is_blank_frame(frame)
|
|||
|
except Exception as e:
|
|||
|
print(f"[警告] 检查无信息帧时出错: {str(e)}")
|
|||
|
return True
|
|||
|
|
|||
|
@staticmethod
|
|||
|
def transcribe_audio(video_path: str, model_name: str = WHISPER_MODEL) -> list:
|
|||
|
"""语音识别与时间戳获取(支持中英文混合)"""
|
|||
|
try:
|
|||
|
# 创建进度跟踪器
|
|||
|
progress = ProgressTracker(100, "语音识别")
|
|||
|
progress.update(10, "加载模型")
|
|||
|
|
|||
|
# 使用更大的模型提高准确率
|
|||
|
model = whisper.load_model(model_name, device="cpu", download_root=MODEL_DIR)
|
|||
|
|
|||
|
progress.update(20, "开始转写")
|
|||
|
|
|||
|
# 配置转写参数
|
|||
|
result = model.transcribe(
|
|||
|
video_path,
|
|||
|
fp16=False,
|
|||
|
language="zh",
|
|||
|
task="transcribe",
|
|||
|
verbose=True,
|
|||
|
initial_prompt="这是一段包含中英文的PPT讲解视频,可能包含专业术语。"
|
|||
|
)
|
|||
|
|
|||
|
progress.update(60, "处理转写结果")
|
|||
|
segments = result.get("segments", [])
|
|||
|
|
|||
|
# 后处理:专业术语替换
|
|||
|
for i, seg in enumerate(segments):
|
|||
|
text = seg["text"]
|
|||
|
for cn, en in PROFESSIONAL_TERMS.items():
|
|||
|
text = text.replace(cn, f"{cn}({en})")
|
|||
|
seg["text"] = text
|
|||
|
progress.update(30 / len(segments), f"处理第{i + 1}/{len(segments)}个片段")
|
|||
|
|
|||
|
progress.complete(f"识别了{len(segments)}个语音片段")
|
|||
|
return segments
|
|||
|
except Exception as e:
|
|||
|
print(f"[错误] 语音识别失败: {str(e)}")
|
|||
|
return []
|
|||
|
|
|||
|
|
|||
|
# ---------------------- 业务逻辑模块 ----------------------
|
|||
|
class ContentAligner:
|
|||
|
@staticmethod
|
|||
|
def generate_page_intervals(timestamps: list, duration: float) -> list:
|
|||
|
"""生成页面时间段"""
|
|||
|
intervals = []
|
|||
|
for i in range(len(timestamps)):
|
|||
|
start = timestamps[i]
|
|||
|
end = timestamps[i + 1] if i < len(timestamps) - 1 else duration
|
|||
|
intervals.append((start, end))
|
|||
|
return intervals
|
|||
|
|
|||
|
@staticmethod
|
|||
|
@lru_cache(maxsize=CACHE_SIZE)
|
|||
|
def calculate_text_similarity(text1: str, text2: str) -> float:
|
|||
|
"""计算文本相似度(带缓存)"""
|
|||
|
# 使用简单的词重叠度计算
|
|||
|
words1 = set(re.findall(r'\w+', text1.lower()))
|
|||
|
words2 = set(re.findall(r'\w+', text2.lower()))
|
|||
|
if not words1 or not words2:
|
|||
|
return 0.0
|
|||
|
intersection = words1.intersection(words2)
|
|||
|
union = words1.union(words2)
|
|||
|
return len(intersection) / len(union)
|
|||
|
|
|||
|
@staticmethod
|
|||
|
def _process_segment(seg, seg_start, intervals, all_segments):
|
|||
|
"""处理单个语音片段(用于并行处理)"""
|
|||
|
# 首先尝试时间戳匹配
|
|||
|
for page_idx, (start, end) in enumerate(intervals):
|
|||
|
if start <= seg_start < end:
|
|||
|
return page_idx, seg
|
|||
|
|
|||
|
# 如果时间戳匹配失败,尝试文本相似度匹配
|
|||
|
best_page = None
|
|||
|
best_score = 0.0
|
|||
|
|
|||
|
for page_idx, (start, end) in enumerate(intervals):
|
|||
|
# 获取该页面的所有文本
|
|||
|
page_text = " ".join([s["text"] for s in all_segments if start <= s["start"] < end])
|
|||
|
similarity = ContentAligner.calculate_text_similarity(seg["text"], page_text)
|
|||
|
if similarity > best_score:
|
|||
|
best_score = similarity
|
|||
|
best_page = page_idx
|
|||
|
|
|||
|
if best_page is not None:
|
|||
|
return best_page, seg
|
|||
|
return None
|
|||
|
|
|||
|
@staticmethod
|
|||
|
def find_best_match(segments: list, intervals: list) -> dict:
|
|||
|
"""为每个语音片段找到最佳匹配的页面(并行处理)"""
|
|||
|
page_texts = defaultdict(list)
|
|||
|
unmatched_segments = []
|
|||
|
|
|||
|
# 创建进度跟踪器
|
|||
|
progress = ProgressTracker(len(segments), "内容对齐")
|
|||
|
|
|||
|
# 使用线程池进行并行处理
|
|||
|
with concurrent.futures.ThreadPoolExecutor(max_workers=MAX_WORKERS) as executor:
|
|||
|
futures = []
|
|||
|
|
|||
|
for seg in segments:
|
|||
|
seg_start = seg["start"]
|
|||
|
future = executor.submit(ContentAligner._process_segment, seg, seg_start, intervals, segments)
|
|||
|
futures.append(future)
|
|||
|
|
|||
|
# 收集结果
|
|||
|
for i, future in enumerate(concurrent.futures.as_completed(futures)):
|
|||
|
try:
|
|||
|
result = future.result()
|
|||
|
if result:
|
|||
|
page_idx, seg = result
|
|||
|
page_texts[page_idx].append(seg)
|
|||
|
else:
|
|||
|
unmatched_segments.append(seg)
|
|||
|
progress.update(1, f"处理第{i + 1}/{len(segments)}个片段")
|
|||
|
except Exception as e:
|
|||
|
print(f"[警告] 处理语音片段时出错: {str(e)}")
|
|||
|
|
|||
|
# 处理未匹配的片段
|
|||
|
if unmatched_segments:
|
|||
|
print(f"[警告] 发现{len(unmatched_segments)}个未匹配的语音片段")
|
|||
|
# 将未匹配片段添加到最近的页面
|
|||
|
for seg in unmatched_segments:
|
|||
|
closest_page = min(range(len(intervals)),
|
|||
|
key=lambda i: abs(seg["start"] - (intervals[i][0] + intervals[i][1]) / 2))
|
|||
|
page_texts[closest_page].append(seg)
|
|||
|
|
|||
|
progress.complete(f"对齐了{len(segments)}个语音片段")
|
|||
|
return page_texts
|
|||
|
|
|||
|
@staticmethod
|
|||
|
def align_content(video_path: str, timestamps: list) -> list:
|
|||
|
"""语音-画面对齐主逻辑(改进版,并行处理)"""
|
|||
|
try:
|
|||
|
# 创建超时处理器
|
|||
|
timeout_handler = TimeoutHandler()
|
|||
|
timeout_handler.start("内容对齐")
|
|||
|
|
|||
|
reader = imageio.get_reader(video_path)
|
|||
|
duration = reader.get_meta_data()["duration"]
|
|||
|
reader.close()
|
|||
|
except:
|
|||
|
duration = timestamps[-1] + FRAME_INTERVAL
|
|||
|
|
|||
|
segments = VideoProcessor.transcribe_audio(video_path)
|
|||
|
intervals = ContentAligner.generate_page_intervals(timestamps, duration)
|
|||
|
|
|||
|
# 使用改进的匹配算法(并行处理)
|
|||
|
page_texts = ContentAligner.find_best_match(segments, intervals)
|
|||
|
|
|||
|
# 生成最终的对齐数据
|
|||
|
aligned_data = []
|
|||
|
for idx in range(len(intervals)):
|
|||
|
text = " ".join([seg["text"] for seg in page_texts.get(idx, [])])
|
|||
|
aligned_data.append({
|
|||
|
"page": idx,
|
|||
|
"start_time": intervals[idx][0],
|
|||
|
"end_time": intervals[idx][1],
|
|||
|
"text": text
|
|||
|
})
|
|||
|
|
|||
|
# 停止超时处理
|
|||
|
timeout_handler.stop()
|
|||
|
|
|||
|
return aligned_data
|
|||
|
|
|||
|
|
|||
|
# ---------------------- 摘要生成模块 ----------------------
|
|||
|
class SummaryGenerator:
|
|||
|
@staticmethod
|
|||
|
def optimize_text(text: str) -> str:
|
|||
|
"""文本浓缩优化,过滤重复句子"""
|
|||
|
# 分割句子
|
|||
|
sentences = re.split(r'[。!?]', text)
|
|||
|
filtered = []
|
|||
|
seen = defaultdict(int) # 用于记录句子出现次数
|
|||
|
|
|||
|
# 预处理句子:去除空白字符,转换为小写
|
|||
|
processed_sentences = [sent.strip().lower() for sent in sentences]
|
|||
|
|
|||
|
# 过滤重复句子
|
|||
|
for sent, processed_sent in zip(sentences, processed_sentences):
|
|||
|
sent = sent.strip()
|
|||
|
if (len(sent) >= 10 # 句子长度至少10个字符
|
|||
|
and not any(word in sent for word in TRANSITION_WORDS) # 不包含过渡词
|
|||
|
and seen[processed_sent] < 5): # 出现次数少于5次
|
|||
|
filtered.append(sent)
|
|||
|
seen[processed_sent] += 1
|
|||
|
|
|||
|
# 如果过滤后没有句子,返回空字符串
|
|||
|
if not filtered:
|
|||
|
return ""
|
|||
|
|
|||
|
# 重新组合句子
|
|||
|
return '。'.join(filtered) + '。'
|
|||
|
|
|||
|
@staticmethod
|
|||
|
def generate_html(aligned_data: list, keyframes: list, output_dir: str):
|
|||
|
"""生成HTML报告(并行处理)"""
|
|||
|
# 创建超时处理器
|
|||
|
timeout_handler = TimeoutHandler()
|
|||
|
timeout_handler.start("HTML报告生成")
|
|||
|
|
|||
|
# 创建进度跟踪器
|
|||
|
progress = ProgressTracker(len(keyframes), "HTML报告生成")
|
|||
|
|
|||
|
pages_data = []
|
|||
|
temp_img_dir = os.path.join(output_dir, "_temp_images")
|
|||
|
os.makedirs(temp_img_dir, exist_ok=True)
|
|||
|
|
|||
|
try:
|
|||
|
# 使用线程池进行并行处理
|
|||
|
with concurrent.futures.ThreadPoolExecutor(max_workers=MAX_WORKERS) as executor:
|
|||
|
futures = []
|
|||
|
|
|||
|
for idx, frame in enumerate(keyframes):
|
|||
|
future = executor.submit(SummaryGenerator._process_frame, idx, frame, aligned_data, temp_img_dir)
|
|||
|
futures.append(future)
|
|||
|
|
|||
|
# 收集结果
|
|||
|
for i, future in enumerate(concurrent.futures.as_completed(futures)):
|
|||
|
try:
|
|||
|
result = future.result()
|
|||
|
if result:
|
|||
|
pages_data.append(result)
|
|||
|
progress.update(1, f"处理第{i + 1}/{len(keyframes)}个页面")
|
|||
|
except Exception as e:
|
|||
|
print(f"[警告] 处理帧时出错: {str(e)}")
|
|||
|
|
|||
|
# 按页面顺序排序
|
|||
|
pages_data.sort(key=lambda x: x["num"])
|
|||
|
|
|||
|
progress.update(10, "生成HTML模板")
|
|||
|
env = Environment()
|
|||
|
template = env.from_string("""
|
|||
|
<!DOCTYPE html>
|
|||
|
<html>
|
|||
|
<head>
|
|||
|
<meta charset="UTF-8">
|
|||
|
<title>PPT视频摘要报告</title>
|
|||
|
<style>
|
|||
|
.page { margin: 20px; padding: 15px; border: 1px solid #eee; }
|
|||
|
img { max-width: 800px; height: auto; }
|
|||
|
.timestamp { color: #666; font-size: 0.9em; }
|
|||
|
.content { margin-top: 10px; }
|
|||
|
</style>
|
|||
|
</head>
|
|||
|
<body>
|
|||
|
<h1>PPT视频结构化摘要</h1>
|
|||
|
{% for page in pages %}
|
|||
|
<div class="page">
|
|||
|
<h2>页面 {{ page.num }}</h2>
|
|||
|
<div class="timestamp">{{ page.time }}</div>
|
|||
|
<img src="{{ page.image }}" alt="页面截图">
|
|||
|
<div class="content">{{ page.text }}</div>
|
|||
|
</div>
|
|||
|
{% endfor %}
|
|||
|
</body>
|
|||
|
</html>
|
|||
|
""")
|
|||
|
|
|||
|
progress.update(10, "保存HTML文件")
|
|||
|
output_path = os.path.join(output_dir, "summary.html")
|
|||
|
with open(output_path, "w", encoding="utf-8") as f:
|
|||
|
f.write(template.render(pages=pages_data))
|
|||
|
print(f"[输出] HTML报告已生成: {output_path}")
|
|||
|
|
|||
|
# 停止超时处理
|
|||
|
timeout_handler.stop()
|
|||
|
progress.complete("HTML报告生成完成")
|
|||
|
finally:
|
|||
|
for f in os.listdir(temp_img_dir):
|
|||
|
os.remove(os.path.join(temp_img_dir, f))
|
|||
|
os.rmdir(temp_img_dir)
|
|||
|
|
|||
|
@staticmethod
|
|||
|
def _process_frame(idx, frame, aligned_data, temp_img_dir):
|
|||
|
"""处理单个帧(用于并行处理)"""
|
|||
|
try:
|
|||
|
img_path = os.path.join(temp_img_dir, f"page_{idx}.jpg")
|
|||
|
frame.save(img_path)
|
|||
|
with open(img_path, "rb") as f:
|
|||
|
img_data = base64.b64encode(f.read()).decode("utf-8")
|
|||
|
|
|||
|
return {
|
|||
|
"num": idx + 1,
|
|||
|
"time": f"{aligned_data[idx]['start_time']:.1f}s - {aligned_data[idx]['end_time']:.1f}s",
|
|||
|
"image": f"data:image/jpeg;base64,{img_data}",
|
|||
|
"text": SummaryGenerator.optimize_text(aligned_data[idx]["text"])
|
|||
|
}
|
|||
|
except Exception as e:
|
|||
|
print(f"[警告] 处理帧 {idx} 时出错: {str(e)}")
|
|||
|
return None
|
|||
|
|
|||
|
@staticmethod
|
|||
|
def generate_pdf(aligned_data: list, keyframes: list, output_dir: str):
|
|||
|
"""生成PDF报告(优化版,并行处理)"""
|
|||
|
# 创建超时处理器
|
|||
|
timeout_handler = TimeoutHandler()
|
|||
|
timeout_handler.start("PDF报告生成")
|
|||
|
|
|||
|
# 创建进度跟踪器
|
|||
|
progress = ProgressTracker(len(keyframes) + 20, "PDF报告生成")
|
|||
|
|
|||
|
temp_html = os.path.join(output_dir, "_temp_pdf.html")
|
|||
|
temp_img_dir = os.path.join(output_dir, "_temp_pdf_images")
|
|||
|
os.makedirs(temp_img_dir, exist_ok=True)
|
|||
|
|
|||
|
try:
|
|||
|
# 使用绝对路径
|
|||
|
abs_temp_img_dir = os.path.abspath(temp_img_dir)
|
|||
|
|
|||
|
progress.update(5, "准备HTML模板")
|
|||
|
html_content = """
|
|||
|
<!DOCTYPE html>
|
|||
|
<html>
|
|||
|
<head>
|
|||
|
<meta charset="UTF-8">
|
|||
|
<style>
|
|||
|
@page {
|
|||
|
margin: 20mm;
|
|||
|
size: A4;
|
|||
|
}
|
|||
|
body {
|
|||
|
font-family: "Microsoft YaHei", "SimSun", sans-serif;
|
|||
|
line-height: 1.6;
|
|||
|
color: #333;
|
|||
|
}
|
|||
|
.page {
|
|||
|
page-break-inside: avoid;
|
|||
|
margin-bottom: 30px;
|
|||
|
padding: 20px;
|
|||
|
border: 1px solid #eee;
|
|||
|
border-radius: 5px;
|
|||
|
}
|
|||
|
.page-number {
|
|||
|
text-align: center;
|
|||
|
font-size: 24pt;
|
|||
|
font-weight: bold;
|
|||
|
margin-bottom: 20px;
|
|||
|
color: #2c3e50;
|
|||
|
}
|
|||
|
.timestamp {
|
|||
|
color: #666;
|
|||
|
font-size: 12pt;
|
|||
|
margin-bottom: 15px;
|
|||
|
}
|
|||
|
.image-container {
|
|||
|
text-align: center;
|
|||
|
margin: 20px 0;
|
|||
|
}
|
|||
|
img {
|
|||
|
max-width: 90% !important;
|
|||
|
height: auto;
|
|||
|
display: block;
|
|||
|
margin: 0 auto;
|
|||
|
box-shadow: 0 2px 5px rgba(0,0,0,0.1);
|
|||
|
}
|
|||
|
.content {
|
|||
|
font-size: 14pt;
|
|||
|
line-height: 1.8;
|
|||
|
margin-top: 20px;
|
|||
|
padding: 15px;
|
|||
|
background: #f9f9f9;
|
|||
|
border-radius: 5px;
|
|||
|
}
|
|||
|
.professional-term {
|
|||
|
color: #2980b9;
|
|||
|
font-weight: bold;
|
|||
|
}
|
|||
|
</style>
|
|||
|
</head>
|
|||
|
<body>
|
|||
|
<h1 style="text-align: center; color: #2c3e50; margin-bottom: 40px;">PPT视频结构化摘要</h1>
|
|||
|
{% for page in pages %}
|
|||
|
<div class="page">
|
|||
|
<div class="page-number">第 {{ page.num }} 页</div>
|
|||
|
<div class="timestamp">时间区间:{{ page.time }}</div>
|
|||
|
<div class="image-container">
|
|||
|
<img src="{{ page.image_path }}" alt="页面截图">
|
|||
|
</div>
|
|||
|
<div class="content">{{ page.text }}</div>
|
|||
|
</div>
|
|||
|
{% endfor %}
|
|||
|
</body>
|
|||
|
</html>
|
|||
|
"""
|
|||
|
|
|||
|
pages_data = []
|
|||
|
|
|||
|
# 使用线程池进行并行处理
|
|||
|
with concurrent.futures.ThreadPoolExecutor(max_workers=MAX_WORKERS) as executor:
|
|||
|
futures = []
|
|||
|
|
|||
|
for idx, frame in enumerate(keyframes):
|
|||
|
future = executor.submit(SummaryGenerator._process_frame_for_pdf, idx, frame, aligned_data,
|
|||
|
abs_temp_img_dir)
|
|||
|
futures.append(future)
|
|||
|
|
|||
|
# 收集结果
|
|||
|
for i, future in enumerate(concurrent.futures.as_completed(futures)):
|
|||
|
try:
|
|||
|
result = future.result()
|
|||
|
if result:
|
|||
|
pages_data.append(result)
|
|||
|
progress.update(1, f"处理第{i + 1}/{len(keyframes)}个页面")
|
|||
|
except Exception as e:
|
|||
|
print(f"[警告] 处理帧时出错: {str(e)}")
|
|||
|
|
|||
|
# 按页面顺序排序
|
|||
|
pages_data.sort(key=lambda x: x["num"])
|
|||
|
|
|||
|
progress.update(5, "生成HTML文件")
|
|||
|
env = Environment()
|
|||
|
template = env.from_string(html_content)
|
|||
|
with open(temp_html, "w", encoding="utf-8") as f:
|
|||
|
f.write(template.render(pages=pages_data))
|
|||
|
|
|||
|
# PDF生成选项
|
|||
|
progress.update(5, "配置PDF生成选项")
|
|||
|
options = {
|
|||
|
"enable-local-file-access": "",
|
|||
|
"encoding": "UTF-8",
|
|||
|
"margin-top": "20mm",
|
|||
|
"margin-bottom": "20mm",
|
|||
|
"margin-left": "20mm",
|
|||
|
"margin-right": "20mm",
|
|||
|
"no-stop-slow-scripts": "",
|
|||
|
"quiet": "",
|
|||
|
"dpi": "300",
|
|||
|
"image-quality": "100",
|
|||
|
"enable-smart-shrinking": "",
|
|||
|
"print-media-type": ""
|
|||
|
}
|
|||
|
config = pdfkit.configuration(wkhtmltopdf=WKHTMLTOPDF_PATH)
|
|||
|
|
|||
|
progress.update(5, "生成PDF文件")
|
|||
|
pdf_path = os.path.join(output_dir, "summary.pdf")
|
|||
|
|
|||
|
# 使用子进程生成PDF,设置超时
|
|||
|
try:
|
|||
|
print("[信息] 尝试使用子进程生成PDF...")
|
|||
|
process = subprocess.Popen(
|
|||
|
[WKHTMLTOPDF_PATH, "--enable-local-file-access", temp_html, pdf_path],
|
|||
|
stdout=subprocess.PIPE,
|
|||
|
stderr=subprocess.PIPE
|
|||
|
)
|
|||
|
|
|||
|
# 等待进程完成,设置超时
|
|||
|
try:
|
|||
|
print("[信息] 等待PDF生成进程完成...")
|
|||
|
stdout, stderr = process.communicate(timeout=60)
|
|||
|
if process.returncode != 0:
|
|||
|
print(f"[警告] PDF生成返回非零状态码: {process.returncode}")
|
|||
|
print(f"[警告] 错误输出: {stderr.decode('utf-8', errors='ignore')}")
|
|||
|
raise Exception(f"PDF生成失败,返回码: {process.returncode}")
|
|||
|
print("[信息] PDF生成进程完成")
|
|||
|
except subprocess.TimeoutExpired:
|
|||
|
print("[警告] PDF生成超时,终止进程")
|
|||
|
process.kill()
|
|||
|
print("[信息] 尝试使用备用方法")
|
|||
|
|
|||
|
# 备用方法:使用pdfkit
|
|||
|
print("[信息] 使用pdfkit库生成PDF...")
|
|||
|
pdfkit.from_file(
|
|||
|
temp_html,
|
|||
|
pdf_path,
|
|||
|
configuration=config,
|
|||
|
options=options
|
|||
|
)
|
|||
|
print("[信息] pdfkit生成PDF完成")
|
|||
|
except Exception as e:
|
|||
|
print(f"[警告] 使用子进程生成PDF失败: {str(e)}")
|
|||
|
# 备用方法:使用pdfkit
|
|||
|
print("[信息] 使用pdfkit库生成PDF...")
|
|||
|
try:
|
|||
|
pdfkit.from_file(
|
|||
|
temp_html,
|
|||
|
pdf_path,
|
|||
|
configuration=config,
|
|||
|
options=options
|
|||
|
)
|
|||
|
print("[信息] pdfkit生成PDF完成")
|
|||
|
except Exception as e2:
|
|||
|
print(f"[错误] pdfkit生成PDF也失败: {str(e2)}")
|
|||
|
# 最后的备用方法:使用简化的HTML
|
|||
|
print("[信息] 尝试使用简化的HTML生成PDF...")
|
|||
|
try:
|
|||
|
# 创建一个简化的HTML文件
|
|||
|
simple_html = os.path.join(output_dir, "_simple_pdf.html")
|
|||
|
with open(simple_html, "w", encoding="utf-8") as f:
|
|||
|
f.write("""
|
|||
|
<!DOCTYPE html>
|
|||
|
<html>
|
|||
|
<head>
|
|||
|
<meta charset="UTF-8">
|
|||
|
<title>PPT视频摘要报告</title>
|
|||
|
<style>
|
|||
|
body { font-family: Arial, sans-serif; }
|
|||
|
.page { margin: 20px; padding: 15px; border: 1px solid #eee; }
|
|||
|
</style>
|
|||
|
</head>
|
|||
|
<body>
|
|||
|
<h1>PPT视频结构化摘要</h1>
|
|||
|
""")
|
|||
|
|
|||
|
for page in pages_data:
|
|||
|
f.write(f"""
|
|||
|
<div class="page">
|
|||
|
<h2>页面 {page['num']}</h2>
|
|||
|
<div>时间区间:{page['time']}</div>
|
|||
|
<div>{page['text']}</div>
|
|||
|
</div>
|
|||
|
""")
|
|||
|
|
|||
|
f.write("</body></html>")
|
|||
|
|
|||
|
# 使用简化的HTML生成PDF
|
|||
|
pdfkit.from_file(
|
|||
|
simple_html,
|
|||
|
pdf_path,
|
|||
|
configuration=config,
|
|||
|
options=options
|
|||
|
)
|
|||
|
print("[信息] 使用简化HTML生成PDF完成")
|
|||
|
|
|||
|
# 清理简化HTML
|
|||
|
if os.path.exists(simple_html):
|
|||
|
os.remove(simple_html)
|
|||
|
except Exception as e3:
|
|||
|
print(f"[错误] 所有PDF生成方法都失败: {str(e3)}")
|
|||
|
print("[警告] 无法生成PDF报告,请检查HTML报告")
|
|||
|
|
|||
|
print(f"[输出] PDF报告已生成: {pdf_path}")
|
|||
|
|
|||
|
# 停止超时处理
|
|||
|
timeout_handler.stop()
|
|||
|
progress.complete("PDF报告生成完成")
|
|||
|
|
|||
|
finally:
|
|||
|
# 清理临时文件
|
|||
|
print("[信息] 清理临时文件...")
|
|||
|
try:
|
|||
|
if os.path.exists(temp_html):
|
|||
|
os.remove(temp_html)
|
|||
|
print("[信息] 已删除临时HTML文件")
|
|||
|
|
|||
|
if os.path.exists(temp_img_dir):
|
|||
|
for f in os.listdir(temp_img_dir):
|
|||
|
try:
|
|||
|
os.remove(os.path.join(temp_img_dir, f))
|
|||
|
except Exception as e:
|
|||
|
print(f"[警告] 删除临时图片文件失败: {str(e)}")
|
|||
|
try:
|
|||
|
os.rmdir(temp_img_dir)
|
|||
|
print("[信息] 已删除临时图片目录")
|
|||
|
except Exception as e:
|
|||
|
print(f"[警告] 删除临时图片目录失败: {str(e)}")
|
|||
|
except Exception as e:
|
|||
|
print(f"[警告] 清理临时文件时出错: {str(e)}")
|
|||
|
|
|||
|
@classmethod
|
|||
|
def generate_all(cls, aligned_data: list, keyframes: list, output_dir: str):
|
|||
|
"""生成所有格式报告(并行处理)"""
|
|||
|
# 创建进度跟踪器
|
|||
|
progress = ProgressTracker(2, "报告生成")
|
|||
|
|
|||
|
# 使用线程池并行生成HTML和PDF
|
|||
|
with concurrent.futures.ThreadPoolExecutor(max_workers=2) as executor:
|
|||
|
html_future = executor.submit(cls.generate_html, aligned_data, keyframes, output_dir)
|
|||
|
pdf_future = executor.submit(cls.generate_pdf, aligned_data, keyframes, output_dir)
|
|||
|
|
|||
|
# 等待HTML生成完成
|
|||
|
try:
|
|||
|
html_future.result(timeout=300) # 设置5分钟超时
|
|||
|
progress.update(1, "HTML报告生成完成")
|
|||
|
except concurrent.futures.TimeoutError:
|
|||
|
print("[警告] HTML报告生成超时")
|
|||
|
except Exception as e:
|
|||
|
print(f"[警告] HTML报告生成出错: {str(e)}")
|
|||
|
|
|||
|
# 等待PDF生成完成
|
|||
|
try:
|
|||
|
pdf_future.result(timeout=300) # 设置5分钟超时
|
|||
|
progress.update(1, "PDF报告生成完成")
|
|||
|
except concurrent.futures.TimeoutError:
|
|||
|
print("[警告] PDF报告生成超时")
|
|||
|
except Exception as e:
|
|||
|
print(f"[警告] PDF报告生成出错: {str(e)}")
|
|||
|
|
|||
|
progress.complete("所有报告生成完成")
|
|||
|
|
|||
|
@staticmethod
|
|||
|
def _process_frame_for_pdf(idx, frame, aligned_data, abs_temp_img_dir):
|
|||
|
"""处理单个帧用于PDF生成(用于并行处理)"""
|
|||
|
try:
|
|||
|
img_filename = f"page_{idx}.jpg"
|
|||
|
img_path = os.path.join(abs_temp_img_dir, img_filename)
|
|||
|
frame.save(img_path)
|
|||
|
|
|||
|
return {
|
|||
|
"num": idx + 1,
|
|||
|
"time": f"{aligned_data[idx]['start_time']:.1f}s - {aligned_data[idx]['end_time']:.1f}s",
|
|||
|
"image_path": img_path,
|
|||
|
"text": SummaryGenerator.optimize_text(aligned_data[idx]["text"])
|
|||
|
}
|
|||
|
except Exception as e:
|
|||
|
print(f"[警告] 处理帧 {idx} 时出错: {str(e)}")
|
|||
|
return None
|
|||
|
|
|||
|
|
|||
|
# ---------------------- 主流程控制 ----------------------
|
|||
|
def main_process():
|
|||
|
# 环境检查
|
|||
|
processor = VideoProcessor()
|
|||
|
if not processor.check_ffmpeg():
|
|||
|
return
|
|||
|
if not os.path.exists(VIDEO_PATH):
|
|||
|
print(f"[错误] 视频文件不存在: {VIDEO_PATH}")
|
|||
|
return
|
|||
|
|
|||
|
# 创建总进度跟踪器
|
|||
|
total_progress = ProgressTracker(4, "总体进度")
|
|||
|
|
|||
|
# 关键帧提取
|
|||
|
total_progress.update(1, "开始关键帧提取")
|
|||
|
keyframes, timestamps = processor.extract_keyframes(VIDEO_PATH)
|
|||
|
if not keyframes:
|
|||
|
print("[错误] 未提取到关键帧")
|
|||
|
return
|
|||
|
total_progress.update(1, "关键帧提取完成")
|
|||
|
|
|||
|
# 内容对齐
|
|||
|
total_progress.update(1, "开始内容对齐")
|
|||
|
aligned_data = ContentAligner.align_content(VIDEO_PATH, timestamps)
|
|||
|
if not aligned_data:
|
|||
|
print("[警告] 未识别到有效语音内容")
|
|||
|
total_progress.update(1, "内容对齐完成")
|
|||
|
|
|||
|
# 生成摘要
|
|||
|
print("[信息] 开始生成报告...")
|
|||
|
os.makedirs(OUTPUT_DIR, exist_ok=True)
|
|||
|
|
|||
|
try:
|
|||
|
SummaryGenerator.generate_all(aligned_data, keyframes, OUTPUT_DIR)
|
|||
|
print("[信息] 报告生成完成")
|
|||
|
except Exception as e:
|
|||
|
print(f"[错误] 报告生成过程中出错: {str(e)}")
|
|||
|
|
|||
|
total_progress.complete("处理完成")
|
|||
|
print("[完成] 所有处理已完成,请查看输出目录中的报告文件")
|
|||
|
|
|||
|
|
|||
|
if __name__ == "__main__":
|
|||
|
try:
|
|||
|
main_process()
|
|||
|
except KeyboardInterrupt:
|
|||
|
print("\n[中断] 用户中断了处理")
|
|||
|
except Exception as e:
|
|||
|
print(f"[错误] 程序执行过程中出现未处理的异常: {str(e)}")
|
|||
|
import traceback
|
|||
|
|
|||
|
traceback.print_exc()
|