PPT/毕设.py

147 lines
5.1 KiB
Python
Raw Permalink Normal View History

2025-04-19 01:06:53 +08:00
import os
import time
import imageio
import whisper
import numpy as np
from PIL import Image
from skimage.metrics import structural_similarity as ssim
import tempfile
# 添加FFmpeg路径根据你的实际安装路径修改
os.environ["PATH"] += os.pathsep + r"D:\ffmpeg\bin" # 例如D:\ffmpeg\bin
# ============================== 配置参数 ==============================
# 示例:将视频复制到 D:\test\input.mp4
VIDEO_PATH = "D:/python项目文件/1/input2.mp4" # 输入视频路径
MODEL_DIR = "D:/whisper_models" # 手动下载的模型存放目录
SSIM_THRESHOLD = 0.85 # 关键帧去重阈值
FRAME_INTERVAL = 2 # 抽帧间隔(秒)
OUTPUT_DIR = "output2" # 输出目录
# =====================================================================
def extract_keyframes_with_time(video_path: str) -> tuple:
"""改进版关键帧提取(返回关键帧图像列表和时间戳列表)"""
try:
# 初始化视频读取器
reader = imageio.get_reader(video_path, 'ffmpeg')
fps = reader.get_meta_data().get('fps', 30)
print(f"视频帧率: {fps}fps, 总时长: {reader.get_meta_data()['duration']:.1f}")
keyframes = []
keyframe_times = []
prev_frame = None
frame_counter = 0
for i, frame in enumerate(reader):
# 按间隔抽帧默认每秒抽帧改为每FRAME_INTERVAL秒抽帧
if i % int(fps * FRAME_INTERVAL) != 0:
continue
current_time = i / fps
# 降采样至320x240加速处理
curr_frame = Image.fromarray(frame).resize((320, 240))
if prev_frame is None:
# 首帧强制保留
keyframes.append(curr_frame)
keyframe_times.append(current_time)
prev_frame = np.array(curr_frame.convert('L'))
else:
# 计算灰度图SSIM
curr_gray = np.array(curr_frame.convert('L'))
score = ssim(prev_frame, curr_gray, data_range=255)
if score < SSIM_THRESHOLD:
keyframes.append(curr_frame)
keyframe_times.append(current_time)
prev_frame = curr_gray
frame_counter += 1
if frame_counter % 10 == 0:
print(f"已处理 {current_time:.1f}秒...")
reader.close()
print(f"关键帧提取完成,共{len(keyframes)}")
return keyframes, keyframe_times
except Exception as e:
print(f"视频处理失败: {str(e)}")
return [], []
def align_text_with_keyframes(video_path: str, keyframe_times: list) -> list:
try:
# 1. 动态添加 FFmpeg 路径
ffmpeg_bin = r"D:\ffmpeg\bin"
os.environ["PATH"] = ffmpeg_bin + os.pathsep + os.environ["PATH"]
# 2. 加载模型
model = whisper.load_model("tiny", device="cpu")
# 3. 执行语音识别(不再传递 ffmpeg_path
result = model.transcribe(video_path, fp16=False)
# 4. 对齐处理
alignment = []
kf_ptr = 0
for seg in result["segments"]:
seg_start = seg["start"]
seg_end = seg["end"]
matched_time = None
while kf_ptr < len(keyframe_times):
if keyframe_times[kf_ptr] <= seg_end:
matched_time = keyframe_times[kf_ptr]
kf_ptr += 1
else:
break
if matched_time is not None:
alignment.append({
"text": seg["text"].strip(),
"start": seg_start,
"end": seg_end,
"keyframe_time": matched_time
})
return alignment
except Exception as e:
print(f"语音处理失败: {str(e)}")
return []
def save_results(keyframes, alignment):
"""保存关键帧和文本对齐结果"""
os.makedirs(OUTPUT_DIR, exist_ok=True)
# 保存关键帧
for i, img in enumerate(keyframes):
img.save(os.path.join(OUTPUT_DIR, f"frame_{i:04d}.jpg"))
# 保存对齐文本
with open(os.path.join(OUTPUT_DIR, "alignment.txt"), "w", encoding="utf-8") as f:
for item in alignment:
f.write(
f"[{item['keyframe_time']:.1f}s] "
f"({item['start']:.1f}-{item['end']:.1f}s): "
f"{item['text']}\n"
)
print(f"结果已保存至{OUTPUT_DIR}目录")
# 打印临时目录路径并检查可写权限
temp_dir = tempfile.gettempdir()
print(f"临时目录: {temp_dir}")
if not os.access(temp_dir, os.W_OK):
print("错误:临时目录不可写!")
else:
print("临时目录可写")
if __name__ == "__main__":
# 步骤1: 提取关键帧
keyframes, keyframe_times = extract_keyframes_with_time(VIDEO_PATH)
if not keyframes:
exit()
# 步骤2: 语音对齐
alignment = align_text_with_keyframes(VIDEO_PATH, keyframe_times)
# 步骤3: 保存结果
save_results(keyframes, alignment)